You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Workshop on DNA-Based Computers, DNA7, held in Tampa, Florida, USA, in June 2001. The 26 revised full papers presented together with 9 poster papers were carefully reviewed and selected from 44 submissions. The papers are organized in topical sections on experimental tools, theoretical tools, probabilistic computational models, computer simulation and sequence design, algorithms, experimental solutions, nano-tech devices, biomimetic tools, new computing models, and splicing systems and membranes.
This book constitutes the thoroughly refereed post-proceedings of the 9th International Workshop on DNA Based Computers, DNA9, held in Madison, Wisconsin, USA in June 2003. The 22 revised full papers presented were carefully selected during two rounds of reviewing and improvement from initially 60 submissions. The papers are organized in topical sections on new experiments and tools, theory, computer simulation and sequence design, self-assembly and autonomous molecular computation, experimental solutions, and new computing models.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Workshop on DNA-Based Computers, DNA7, held in Tampa, Florida, USA, in June 2001. The 26 revised full papers presented together with 9 poster papers were carefully reviewed and selected from 44 submissions. The papers are organized in topical sections on experimental tools, theoretical tools, probabilistic computational models, computer simulation and sequence design, algorithms, experimental solutions, nano-tech devices, biomimetic tools, new computing models, and splicing systems and membranes.
This book constitutes the thoroughly refereed post-proceedings of the 11th International Workshop on DNA Based Computers, DNA11, held in London, ON, Canada, in June 2005. The 34 revised full papers presented were carefully selected during two rounds of reviewing and improvement from an initial total of 79 submissions. The wide-ranging topics include in vitro and in vivo biomolecular computation, algorithmic self-assembly, DNA device design, DNA coding theory, and membrane computing.
DNA Nanoscience: From Prebiotic Origins to Emerging Nanotechnology melds two tales of DNA. One is a look at the first 35 years of DNA nanotechnology to better appreciate what lies ahead in this emerging field. The other story looks back 4 billion years to the possible origins of DNA which are shrouded in mystery. The book is divided into three parts comprised of 15 chapters and two Brief Interludes. Part I includes subjects underpinning the book such as a primer on DNA, the broader discipline of nanoscience, and experimental tools used by the principals in the narrative. Part II examines the field of structural DNA nanotechnology, founded by biochemist/crystallographer Nadrian Seeman, that uses DNA as a construction material for nanoscale structures and devices, rather than as a genetic material. Part III looks at the work of physicists Noel Clark and Tommaso Bellini who found that short DNA (nanoDNA) forms liquid crystals that act as a structural gatekeeper, orchestrating a series of self-assembly processes using nanoDNA. This led to an explanation of the polymeric structure of DNA and of how life may have emerged from the prebiotic clutter.
This volume presents the proceedings from the third DIMACS workshop on "DNA Based Computers" held at the University of Pennsylvania (Philadelphia). The workshop was part of the Special Year on Molecular Biology and the Special Year on DNA Computing. The focus of this workshop was on the multidisciplinary nature of the conference, with emphasis on the interaction between biology and biochemistry on one hand and computer science and mathematics on the other.
Covering recent research into unconventional methods of computing for disciplines in computer science, mathematics, biology, physics and philosophy, the subjects include: nonconventional computational methods, DNA computation, quantum computation, and beyong Turing computability; new methods of discrete computation; theoretical and conceptual new computational paradigms; practical knowledge on new computing technologies.
Featuring two hundred color plates, this history of the craft of scientific inquiry is as exquisite as the experiments it documents. This illustrated history of experimental science is more than just a celebration of the ingenuity that scientists and natural philosophers have used throughout the ages to study—and to change—the world. Here we see in intricate detail experiments that have, in some way or another, exhibited elegance and beauty: in their design, their conception, and their execution. Celebrated science writer Philip Ball invites readers to marvel at and admire the craftsmanship of scientific instruments and apparatus on display, from the earliest microscopes to the giant particle colliders of today. With Ball as our expert guide, we are encouraged to think carefully about what experiments are, what they mean, and how they are used. Ranging across millennia and geographies, Beautiful Experiments not only demonstrates why “experiment” remains a contested notion in how the work of science is done, but also explains how we came to understand how the world functions, what it contains, and where the pursuit of that understanding has brought us today.
This book provides a broad overview of the entire field of DNA computation, tracing its history and development. It contains detailed descriptions of all major theoretical models and experimental results to date and discusses potential future developments. It concludes by outlining the challenges currently faced by researchers in the field. This book will be a useful reference for researchers and students, as well as an accessible introduction for those new to the field.
Half a billion years of evolution have turned the eye into an unbelievable pattern detector. Everything we perceive comes in delightful multicolored forms. Now, in the age of science, we want to comprehend what and why we see.Two dozen outstanding biologists, chemists, physicists, psychologists, computer scientists and mathematicians met at the Institut d'Hautes Etudes Scientifiques in Bures-sur-Yvette, France. They expounded their views on the physical, biological and physiological mechanisms creating the tapestry of patterns we see in molecules, plants, insects, seashells, and even the human brain. This volume comprises surveys of different aspects of pattern formation and recognition, and is aimed at the scientifically minded reader.