Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Analysis, et Cetera
  • Language: en
  • Pages: 707

Analysis, et Cetera

Analysis, et cetera: Research Papers Published in Honor of Jürgen Moser's 60th Birthday provides a collection of papers dedicated to Jürgen Moser on the occasion of his 60th birthday. This book covers a variety of topics, including Helmholtz equation, algebraic complex integrability, theory of Lie groups, and trigonometric polynomials. Organized into 31 chapters, this book begins with an overview of some basic consequences of the definition of algebraic complete integrability. This text then derives a representation theorem for solutions of the Helmholtz equation. Other chapters consider the integrable generalizations of the Volterra system and explain the dynamical system in the finite-dimensional case. This book discusses as well the global periodic solutions for the planar triple pendulum. The final chapter deals with the problem of deriving the macroscopic conservation laws, or the Euler equations, in accurate fashion from the microscopic equations of classical mechanics. This book is a valuable resource for mathematicians.

Stable and Random Motions in Dynamical Systems
  • Language: en
  • Pages: 216

Stable and Random Motions in Dynamical Systems

For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, ...

Notes on Dynamical Systems
  • Language: en
  • Pages: 266

Notes on Dynamical Systems

This book is an introduction to the field of dynamical systems, in particular, to the special class of Hamiltonian systems. The authors aimed at keeping the requirements of mathematical techniques minimal but giving detailed proofs and many examples and illustrations from physics and celestial mechanics. After all, the celestial $N$-body problem is the origin of dynamical systems and gave rise in the past to many mathematical developments. Jurgen Moser (1928-1999) was a professor atthe Courant Institute, New York, and then at ETH Zurich. He served as president of the International Mathematical Union and received many honors and prizes, among them the Wolf Prize in mathematics. Jurgen Moser is the author of several books, among them Stable and Random Motions in DynamicalSystems. Eduard Zehnder is a professor at ETH Zurich. He is coauthor with Helmut Hofer of the book Symplectic Invariants and Hamiltonian Dynamics. Information for our distributors: Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.

Stable and Random Motions in Dynamical Systems
  • Language: en
  • Pages: 214

Stable and Random Motions in Dynamical Systems

For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, ...

Lectures on the Geometry of Numbers
  • Language: en
  • Pages: 168

Lectures on the Geometry of Numbers

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.

Lectures on Celestial Mechanics
  • Language: en
  • Pages: 312

Lectures on Celestial Mechanics

The present book represents to a large extent the translation of the German "Vorlesungen über Himmelsmechanik" by C. L. Siegel. The demand for a new edition and for an English translation gave rise to the present volume which, however, goes beyond a mere translation. To take account of recent work in this field a number of sections have been added, especially in the third chapter which deals with the stability theory. Still, it has not been attempted to give a complete presentation of the subject, and the basic prganization of Siegel's original book has not been altered. The emphasis lies in the development of results and analytic methods which are based on the ideas of H. Poincare, G. D. B...

Control and Nonlinearity
  • Language: en
  • Pages: 442

Control and Nonlinearity

This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.

Singularity Theory for Non-Twist KAM Tori
  • Language: en
  • Pages: 128

Singularity Theory for Non-Twist KAM Tori

In this monograph the authors introduce a new method to study bifurcations of KAM tori with fixed Diophantine frequency in parameter-dependent Hamiltonian systems. It is based on Singularity Theory of critical points of a real-valued function which the authors call the potential. The potential is constructed in such a way that: nondegenerate critical points of the potential correspond to twist invariant tori (i.e. with nondegenerate torsion) and degenerate critical points of the potential correspond to non-twist invariant tori. Hence, bifurcating points correspond to non-twist tori.

Wolf Prize in Mathematics
  • Language: en
  • Pages: 944

Wolf Prize in Mathematics

None

Physics of Particle Accelerators
  • Language: en
  • Pages: 2398

Physics of Particle Accelerators

  • Type: Book
  • -
  • Published: 1989
  • -
  • Publisher: Unknown

None