You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Boolean algebras have historically played a special role in the development of the theory of general or "universal" algebraic systems, providing important links between algebra and analysis, set theory, mathematical logic, and computer science. It is not surprising then that focusing on specific properties of Boolean algebras has lead to new directions in universal algebra. In the first unified study of polynomial completeness, Polynomial Completeness in Algebraic Systems focuses on and systematically extends another specific property of Boolean algebras: the property of affine completeness. The authors present full proof that all affine complete varieties are congruence distributive and tha...
""Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s.
This book started with Lattice Theory, First Concepts, in 1971. Then came General Lattice Theory, First Edition, in 1978, and the Second Edition twenty years later. Since the publication of the first edition in 1978, General Lattice Theory has become the authoritative introduction to lattice theory for graduate students and the standard reference for researchers. The First Edition set out to introduce and survey lattice theory. Some 12,000 papers have been published in the field since then; so Lattice Theory: Foundation focuses on introducing the field, laying the foundation for special topics and applications. Lattice Theory: Foundation, based on the previous three books, covers the fundame...
This book is the second of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
Semigroups, Automata, Universal Algebra, Varieties
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
This volume provides a selection of previously published papers and manuscripts of Uno Kaljulaid, an eminent Estonian algebraist of the last century. The central part of the book is the English translation of Kaljulaid's 1979 Candidate thesis, which originally was typewritten in Russian and manufactured in not so many copies. The thesis is devoted to representation theory in the spirit of his thesis advisor B.I. Plotkin: representations of semigroups and algebras, especially extension to this situation, and application of the notion of triangular product of representations for groups introduced by Plotkin. Through representation theory, Kaljulaid became also interested in automata theory, wh...
This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitiit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische For schungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight differen...
It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to...
Radicals arose originally from structural investigations in rings, but later on they infiltrated into various branches of algebra, as well as into topology and relational structures. This volume is the result of a conference attended by mathematicians from all five continents and thus represents the current state of research in the area.