You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents Bayes’ theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.
A treatment of estimating unknown parameters, testing hypotheses and estimating confidence intervals in linear models. Readers will find here presentations of the Gauss-Markoff model, the analysis of variance, the multivariate model, the model with unknown variance and covariance components and the regression model as well as the mixed model for estimating random parameters. A chapter on the robust estimation of parameters and several examples have been added to this second edition. The necessary theorems of vector and matrix algebra and the probability distributions of test statistics are derived so as to make this book self-contained. Geodesy students as well as those in the natural sciences and engineering will find the emphasis on the geodetic application of statistical models extremely useful.
This introduction to Bayesian inference places special emphasis on applications. All basic concepts are presented: Bayes' theorem, prior density functions, point estimation, confidence region, hypothesis testing and predictive analysis. In addition, Monte Carlo methods are discussed since the applications mostly rely on the numerical integration of the posterior distribution. Furthermore, Bayesian inference in the linear model, nonlinear model, mixed model and in the model with unknown variance and covariance components is considered. Solutions are supplied for the classification, for the posterior analysis based on distributions of robust maximum likelihood type estimates, and for the reconstruction of digital images.
While preparing and teaching ‘Introduction to Geodesy I and II’ to undergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taught required some skills in algebra, and in particular, computer algebra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we have attempted to put together basic concepts of abstract algebra which underpin the techniques for solving algebraic problems. Algebraic computational algorithms useful for solving problems which require exac...
This second edition of Mathematical Geosciences book adds five new topics: Solution equations with uncertainty, which proposes two novel methods for solving nonlinear geodetic equations as stochastic variables when the parameters of these equations have uncertainty characterized by probability distribution. The first method, an algebraic technique, partly employs symbolic computations and is applicable to polynomial systems having different uncertainty distributions of the parameters. The second method, a numerical technique, uses stochastic differential equation in Ito form; Nature Inspired Global Optimization where Meta-heuristic algorithms are based on natural phenomenon such as Particle ...
None