You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.
B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly ...
This volume consists of the proceedings of the conference on Physical Mathematics and Nonlinear Partial Differential Equations held at West Virginia University in Morgantown. It describes some work dealing with weak limits of solutions to nonlinear systems of partial differential equations.
The papers in this book, first presented at a 1986 AMS Short Course, give a brief introduction to approximation theory and some of its current areas of active research, both theoretical and applied. The first lecture describes and illustrates the basic concerns of the field. Topics highlighted in the other lectures include the following: approximation in the complex domain, $N$-width, optimal recovery, interpolation, algorithms for approximation, and splines, with a strong emphasis on a multivariate setting for the last three topics. The book is aimed at mathematicians interested in an introduction to areas of current research and to engineers and scientists interested in exploring the field for possible applications to their own fields. The book is best understood by those with a standard first graduate course in real and complex analysis, but some of the presentations are accessible with the minimal requirements of advanced calculus and linear algebra.
Implicit surfaces offer special effects animators, graphic designers, CAD engineers, graphics students, and hobbyists a new range of capabilities for the modeling of complex geometric objects. In contrast to traditional parametric surfaces, implicit surfaces can easily describe smooth, intricate, and articulatable shapes. These powerful yet easily understood surfaces are finding use in a growing number of graphics applications. This comprehensive introduction develops the fundamental concepts and techniques of implicit surface modeling, rendering, and animating in terms accessible to anyone with a basic background in computer graphics. + provides a thorough overview of implicit surfaces with a focus on their applications in graphics + explains the best methods for designing, representing, and visualizing implicit surfaces + surveys the latest research With contributions from seven graphics authorities, this innovative guide establishes implicit surfaces as a powerful and practical tool for animation and rendering.
These seleeta contain 761 of the more than 2600 pages of 1. J. Schoenberg's published articles. The selection made and the grouping in which the papers are presented here reflect most strongly Schoenberg's wishes. The first volume of these seleeta is drawn from Schoenberg's remarkable work on Number Theory, Positive Definite Functions and Metric Geometry, Real and Complex Analysis, and on the Landau Problem. Schoenberg's fundamental papers on Total Pos itivity and Variation Diminution, on P6lya Frequency functions and sequences, and on Splines, especially Cardinal Splines, make up the second volume. In addition, various commentaries have been provided. Lettered references in these refer to items listed alphabetically at the end of each commentary. Numbered references refer to the list of Schoenberg's publications to be found in each volume. Those included in these seleeta are starred. It has been an honor to have been entrusted with the editorial work for these seleeta. I am grateful to the writers of the various commentaries for their illuminating contributions and to Richard Askey for solid advice.
This volume constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Curves and Surfaces, held in Avignon, in June 2010. The conference had the overall theme: "Representation and Approximation of Curves and Surfaces and Applications". The 39 revised full papers presented together with 9 invited talks were carefully reviewed and selected from 114 talks presented at the conference. The topics addressed by the papers range from mathematical foundations to practical implementation on modern graphics processing units and address a wide area of topics such as computer-aided geometric design, computer graphics and visualisation, computational geometry and topology, geometry processing, image and signal processing, interpolation and smoothing, scattered data processing and learning theory and subdivision, wavelets and multi-resolution methods.
None