You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new edition also treats smart materials and artificial life. A new chapter on information and computational dynamics takes up many recent discussions in the community.
Everybody knows them. Smartphones that talk to us, wristwatches that record our health data, workflows that organize themselves automatically, cars, airplanes and drones that control themselves, traffic and energy systems with autonomous logistics or robots that explore distant planets are technical examples of a networked world of intelligent systems. Machine learning is dramatically changing our civilization. We rely more and more on efficient algorithms, because otherwise we will not be able to cope with the complexity of our civilizing infrastructure. But how secure are AI algorithms? This challenge is taken up in the 2nd edition: Complex neural networks are fed and trained with huge amo...
Complexity and nonlinearity are prominent features in the evolution of matter, life, and human society. Even our mind seems to be governed by the nonlinear dynamics of the complex networks in our brain. This book considers complex systems in the physical and biological sciences, cognitive and computer sciences, social and economic sciences, and philosophy and history of science. An in terdisciplinary methodology is introduced to explain the emergence of order in nature and mind and in the econ omy and society by common principles. These methods are sometimes said to foreshadow the new sciences of complexity characterizing the scientific deve10pment of the 21 st century. The book critically an alyzes the successes and limits of this approach, its sys tematic foundations, and its historical and philosophical background. An epilogue discusses new standards of eth ical behavior which are demanded by the complex prob lems of nature and mind, economy and society.
In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.
As the real world is rapidly becoming more and more complicated, economists need to venture beyond the boundaries of mainstream economics and integrate philosophical thought and complexity into their analytical frameworks. In this context, this volume brings together papers on economic theory and its related issues, exploring complex production systems and heterogeneously interacting human behavior. The author challenges economists to integrate economic theory and moral science anew by referring to evolutionary economics and socio-econophysics. The three parts of the book focus on the complexities of production and social interaction, the moral science of heterogeneous economic interaction, and the Avatamsaka’s dilemma of the two-person game with only positive spillovers.
None
Digitalization has transformed the discourse of architecture: that discourse is now defined by a wealth of new terms and concepts that previously either had no meaning, or had different meanings, in the context of architectural theory and design. Its concepts and strategies are increasingly shaped by influences emerging at the intersection with scientific and cultural notions from modern information technology. The series Context Architecture seeks to take a critical selection of concepts that play a vital role in the current discourse and put them up for discussion. When Vitruvius described the architect as a "uomo universale," he gave rise to the architect’s conception of him- or herself...
It is clear that computation is playing an increasingly prominent role in the development of mathematics, as well as in the natural and social sciences. The work of Stephen Wolfram over the last several decades has been a salient part in this phenomenon helping founding the field of Complex Systems, with many of his constructs and ideas incorporated in his book A New Kind of Science (ANKS) becoming part of the scientific discourse and general academic knowledge--from the now established Elementary Cellular Automata to the unconventional concept of mining the Computational Universe, from today's widespread Wolfram's Behavioural Classification to his principles of Irreducibility and Computatio...
An innovative feature of this book is its econocentric structure, focusing on digital designs. From the outset, econocentrism is assumed to be a core engine of capitalism, like money. The new coronavirus pandemic has changed lifestyles worldwide, which are unlikely ever to return in their original form. This great transformation will change the nature of the socio-economic system itself and will be centered on digital designs. At present, money already is beginning to undergo a major revolution in that sense. Many books dealing with digital designs and innovations have been published, but few if any of them focus on monetary and analytical methods in the way that this present volume does.The book then contains 6 parts: Evolution of money and thinking complexities in the AI era; Goods market and the future of labor market; Computational social approaches to social dilemmas, smart city, cryptocurrencies; Artificial market experiments; The randomness and high frequencies in financial data; Other trading strategy issues and the effects of AI usage. These issues may be indispensable subjects in our age. Study these subject, and have a step forward to the future society!
This book is based on the outcome of the “2012 Interdisciplinary Symposium on Complex Systems” held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexit...