You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Minerals and Human Health is written in response to the demand for additional knowledge about global climate change, the industrial contamination of water reservoirs, and epidemiological intoxication from industrial hazards related to the use of mineral resources. The book addresses issues associated with the physical and geological processes of the Earth, the sustainability and fragility of the Earth's resources, and the interplay between health, industrial activities, and environments. It combines mineralogy, medicine, and the environmental, life, and political sciences to develop solutions to ease human suffering from geological toxicity. Minerals and Human Health helps students to understand the Earth's activities and the unique resources that sustain life and facilitate industrial progress. The text teaches readers how the dispersal of geological materials effects the human population. In-book quizzes allow students to assess their own progress. Questions for discussion and review encourage critical thinking and debate and support retention. Minerals and Human Health can be used in courses on earth and environmental sciences, geopollution, and geochemistry.
Ultrahigh Pressure Metamorphism (UHPM) is a fast growing discipline that was established 25 years ago after discoveries of high pressure minerals, coesite and diamonds. The current explosion of research on UHMP terranes reflects their significance for understanding large scale mantle dynamics, major elements of plate tectonics such as continental collisions, deep subduction and exhumation, mountains building, geochemical recycling 'from surface to the core', and a deep storage of light elements participating in green-house effects in the atmosphere. This book provides insights into the formation of diamond and coesite at very high pressures and explores new ideas regarding the tectonic setti...
This book is Open Access. A digital copy can be downloaded for free from Wiley Online Library. Explores the behavior of carbon in minerals, melts, and fluids under extreme conditions Carbon trapped in diamonds and carbonate-bearing rocks in subduction zones are examples of the continuing exchange of substantial carbon between Earth’s surface and its interior. However, there is still much to learn about the forms, transformations, and movements of carbon deep inside the Earth. Carbon in Earth's Interior presents recent research on the physical and chemical behavior of carbon-bearing materials and serves as a reference point for future carbon science research. Volume highlights include: Data...
This Special Issue contains original scientific papers in the field of mineral physics (and also rock physics). These papers are grouped into four categories: Reviews, Experimental Science, Theoretical Science and Technological Developments. These papers include those from first authors covering 5 generations of mineral physicists, including contemporaries of Orson [e.g., William Bassett, Frank Stacey], the next generation of leaders in mineral physics throughout the world [e.g., Michael Brown, Eiji Ohtani], current leaders in this field [e.g., Agnes Dewaele, Jun Tsuchiya], senior graduate students [e.g., Jan Borgomano, Vasilije Dobrosavlijevic, Francesca Miozzi], and an undergraduate studen...
Man’s intensifying use of the Earth’s habitat has led to an urgent need for scientifically advanced ‘geo-prediction systems’ that accurately locate subsurface resources and forecast the timing and magnitude of earthquakes, volcanic eruptions and land subsidence. As advances in the earth sciences lead to process-oriented ways of modeling the complex processes in the solid Earth, the papers in this volume provide a survey of some recent developments at the leading edge of this highly technical discipline. The chapters cover current research in predicting the future behavior of geologic systems as well as the mapping of geologic patterns that exist now in the subsurface as frozen eviden...
High-pressure mineral physics is a field that is strongly driven by the development of new technology. Fifty years ago, when experimentally achievable pressures were limited to just 25 GPa, little was know about the mineralogy of the Earth's lower mantle. Silicate perovskite, the likely dominant mineral of the deep Earth, was identified only when the high-pressure techniques broke the pressure barrier of 25 GPa in 1970s. However, as the maximum achievable pressure reached beyond one Megabar (100 GPa) and even to the pressure of Earth's core on minute samples, new discoveries increasingly were fostered by the development of new analytical techniques and improvements in sensitivity and precisi...
None
This book examines the geological aspects of the ultrahigh pressure minerals - diamond and coesite - in the Earth's crust.