You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Learning and Optimization, LION 8, which was held in Gainesville, FL, USA, in February 2014. The 33 contributions presented were carefully reviewed and selected for inclusion in this book. A large variety of topics are covered, such as algorithm configuration; multiobjective optimization; metaheuristics; graphs and networks; logistics and transportation; and biomedical applications.
A successful integration of constraint programming and data mining has the potential to lead to a new ICT paradigm with far reaching implications. It could change the face of data mining and machine learning, as well as constraint programming technology. It would not only allow one to use data mining techniques in constraint programming to identify and update constraints and optimization criteria, but also to employ constraints and criteria in data mining and machine learning in order to discover models compatible with prior knowledge. This book reports on some key results obtained on this integrated and cross- disciplinary approach within the European FP7 FET Open project no. 284715 on “Inductive Constraint Programming” and a number of associated workshops and Dagstuhl seminars. The book is structured in five parts: background; learning to model; learning to solve; constraint programming for data mining; and showcases.
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrat...
This book constitutes the refereed proceedings of the 29th Canadian Conference on Artificial Intelligence, Canadian AI 2016, held in Victoria, BC, Canada, in May/June 2016. The 12 full papers and 27 short papers presented were carefully reviewed and selected from 97 submissions. The focus of the conference was on the following subjects: actions and behaviours, audio and visual recognition, natural language processing, reasoning and learning, streams and distributed computing.
This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on Learning and Intelligent Optimization, LION 11, held in Nizhny,Novgorod, Russia, in June 2017. The 20 full papers (among these one GENOPT paper) and 15 short papers presented have been carefully reviewed and selected from 73 submissions. The papers explore the advanced research developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning.
This collection, presented to Michael Friedrich in honour of his academic career at of the Centre for the Study of Manuscript Cultures, traces key concepts that scholars associated with the Centre have developed and refined for the systematic study of manuscript cultures. At the same time, the contributions showcase the possibilities of expanding the traditional subject of ‘manuscripts’ to the larger perspective of ‘written artefacts’.
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and ...
The 16th annual International Conference on the Principles and Practice of Constraint Programming (CP 2010) was held in St. Andrews, Scotland, during September 6–10, 2010. We would like to thank our sponsors for their generous support of this event. This conference is concerned with all aspects of computing with constraints, including:theory,algorithms,applications,environments,languages,modelsand systems. We received a wide variety of submissions, each of which was reviewed by at least three referees. Referees were chosen for each submission by an initial bidding process where Program Committee members chose papers from their area of interest. The range of expertise represented by the lar...
The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models;...