Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Automated Machine Learning
  • Language: en
  • Pages: 223

Automated Machine Learning

  • Type: Book
  • -
  • Published: 2019-05-17
  • -
  • Publisher: Springer

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 652

Machine Learning and Knowledge Discovery in Databases

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2010, held in Barcelona, Spain, in September 2010. The 120 revised full papers presented in three volumes, together with 12 demos (out of 24 submitted demos), were carefully reviewed and selected from 658 paper submissions. In addition, 7 ML and 7 DM papers were distinguished by the program chairs on the basis of their exceptional scientific quality and high impact on the field. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. A topic widely explored from both ML and DM perspectives was graphs, with motivations ranging from molecular chemistry to social networks.

Data Analysis, Machine Learning and Applications
  • Language: en
  • Pages: 714

Data Analysis, Machine Learning and Applications

Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.

Automated Machine Learning
  • Language: en
  • Pages: 312

Automated Machine Learning

Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide rang...

Logical and Relational Learning
  • Language: en
  • Pages: 395

Logical and Relational Learning

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 904

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2012-09-08
  • -
  • Publisher: Springer

This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionalit...

Machine Learning Fundamentals
  • Language: en
  • Pages: 423

Machine Learning Fundamentals

A coherent introduction to core concepts and deep learning techniques that are critical to academic research and real-world applications.

Advances in Intelligent Data Analysis X
  • Language: en
  • Pages: 438

Advances in Intelligent Data Analysis X

  • Type: Book
  • -
  • Published: 2011-10-25
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 10th International Conference on Intelligent Data Analysis, IDA 2011, held in Porto, Portugal, in October 2011. The 19 revised full papers and 16 revised poster papers resented together with 3 invited papers were carefully reviewed and selected from 73 submissions. All current aspects of intelligent data analysis are addressed, particularly intelligent support for modeling and analyzing complex, dynamical systems. The papers offer intelligent support for understanding evolving scientific and social systems including data collection and acquisition, such as crowd sourcing; data cleaning, semantics and markup; searching for data and assembling datasets from multiple sources; data processing, including workflows, mixed-initiative data analysis, and planning; data and information fusion; incremental, mixed-initiative model development, testing and revision; and visualization and dissemination of results; etc.

Leveraging Applications of Formal Methods, Verification and Validation
  • Language: en
  • Pages: 881

Leveraging Applications of Formal Methods, Verification and Validation

This volume contains the conference proceedings of ISoLA 2008, the Third International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, which was held in Porto Sani (Kassandra, Chalkidiki), Greece during October 13–15, 2008, sponsored by EASST and in cooperation with the IEEE Technical Committee on Complex Systems. Following the tradition of its forerunners in 2004 and 2006 in Cyprus, and the ISoLA Workshops in Greenbelt (USA) in 2005 and in Poitiers (France) in 2007, ISoLA 2008 provided a forum for developers, users, and researchers to discuss issues related to the adoption and use of rigorous tools and methods for the specification, analysis, verificat...

Intelligent Data Engineering and Automated Learning – IDEAL 2021
  • Language: en
  • Pages: 663

Intelligent Data Engineering and Automated Learning – IDEAL 2021

This book constitutes the refereed proceedings of the 22nd International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2021, which took place during November 25-27, 2021. The conference was originally planned to take place in Manchester, UK, but was held virtually due to the COVID-19 pandemic. The 61 full papers included in this book were carefully reviewed and selected from 85 submissions. They deal with emerging and challenging topics in intelligent data analytics and associated machine learning paradigms and systems. Special sessions were held on clustering for interpretable machine learning; machine learning towards smarter multimodal systems; and computational intelligence for computer vision and image processing.