You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids.Lattice gas methods are new parallel, high-resolution, high-efficiency techniques for solving partial differential equations. This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids. It introduces the lattice Boltzmann equation, a new direction in lattice gas research that considerably reduces fluctuations.The twenty-seven contributions explore the many available software options exploiting the fact that lattice gas methods are completely parallel, which produces significant gains in speed. Following an overview of work done in the past five years and a discussion of frontiers, the chapters describe viscosity modeling and hydrodynamic mode analyses, multiphase flows and porous media, reactions and diffusion, basic relations and long-time correlations, the lattice Boltzmann equation, computer hardware, and lattice gas applications.Gary D. Doolen is Acting Director of the Center for Nonlinear Studies at Los Alamos National Laboratory.
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
The theory and computation of lattice gas dynamics for viscous fluid hydrodynamics is presented. Theoretical analysis of these exactly conserved, discrete models is done using the Boltzmann approximation, a mean-field theoretical treatment. Theoretical results are then compared to numerical data arrived by exactly computed simulations of simple lattice-gas systems. The numerical simulations presented were carried out on a prototype lattice-gas machine, the CAM-8, which is a virtual finegrained paralled mesh architecture suitable for discrete modeling in arbitrary dimensions. Single speed and multi-speed lattice gases are treated. The new contribution is an integer lattice gas with many particles per momentum state. Comparisons are made between the mean-field theory and numerical experiments for shear viscosity transport coefficient.
Articles review the diverse recent progress in the theory and development of lattice-gas and lattice Boltzmann methods and their applications. It features up-to-date articles, takes an interdisciplinary approach including mathematics, physical chemistry, and geophysics.
A self-contained, comprehensive introduction to the theory of hydrodynamic lattice gases.
Although the idea of using discrete methods for modeling partial differential equations occurred very early, the actual statement that cellular automata techniques can approximate the solutions of hydrodynamic partial differential equations was first discovered by Frisch, Hasslacher, and Pomeau. Their description of the derivation, which assumes the validity of the Boltzmann equation, appeared in the Physical Review Letters in April 1986. It is the intent of this book to provide some overview of the directions that lattice gas research has taken from 1986 to early 1989.
Lattice gas hydrodynamics describes the approach to fluid dynamics using a micro-world constructed as an automaton universe, where the microscopic dynamics is based not on a description of interacting particles, but on the laws of symmetry and invariance of macroscopic physics. We imagine point-like particles residing on a regular lattice, where they move from node to node and undergo collisions when their trajectories meet. If the collisions occur according to some simple logical rules, and if the lattice has the proper symmetry, then the automaton shows global behavior very similar to that of real fluids. This book carries two important messages. First, it shows how an automaton universe with simple microscopic dynamics--the lattice gas--can exhibit macroscopic behavior in accordance with the phenomenological laws of classical physics. Second, it demonstrates that lattice gases have spontaneous microscopic fluctuations that capture the essentials of actual fluctuations in real fluids.
Recently, the development of a 'poor man version' of the molecular dynamics approach has been stimulated by progress and perspectives in parallel computers. Similarly as for molecular dynamics simulations, the prediction of flows in fluids will follow from a microscopic description of interacting particles, but here the particles are confined to points moving along the links of a regular lattice, and interactions reduce to simple mathematical rules. The motivation for using a lattice gas (in fact, a well known model system in Statistical Physics) to simulate hydrodynamics stems from the idea that the details of the microscopic properties should be unimportant to the macroscopic behavior of the fluid. So whether the fictitious micro-world one uses is a caricature of a real fluid does not matter as long as it produces correct hydrodynamics. To what extent does lattice gas hydrodynamics meet this goal? To answer this question, we first build up the constitutive elements to construct a lattice gas; then we put a model system to work and present the results of hydrodynamic simulations; finally the computational aspects of present and future realizations are reviewed.