You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
This volume is composed of six contributions derived from the lectures given during the UIMP-RSME Lluis Santalo Summer School on ``Recent Advances in Real Complexity and Computation'', held July 16-20, 2012, in Santander, Spain. The goal of this Summer School was to present some of the recent advances on Smale's 17th Problem: ``Can a zero of $n$ complex polynomial equations in $n$ unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?'' These papers cover several aspects of this problem: from numerical to symbolic methods in polynomial equation solving, computational complexity aspects (both worse and average cases and both upper and lower complexity bounds) as well as aspects of the underlying geometry of the problem. Some of the contributions also deal with either real or multiple solutions solving.
This volume contains the proceedings of the Maurice Auslander Distinguished Lectures and International Conference, held April 25-30, 2012, in Falmouth, MA. The representation theory of finite dimensional algebras and related topics, especially cluster combinatorics, is a very active topic of research. This volume contains papers covering both the history and the latest developments in this topic. In particular, Otto Kerner gives a review of basic theorems and latest results about wild hereditary algebras, Yuri Berest develops the theory of derived representation schemes, and Markus Schmidmeier presents new applications of arc diagrams.
Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.
Founded in 1931 by Otto Neugebauer as the printed documentation service “Zentralblatt für Mathematik und ihre Grenzgebiete”, Zentralblatt MATH (ZBMATH) celebrates its 80th anniversary in 2011. Today it is the most comprehensive and active reference database in pure and applied mathematics worldwide. Many prominent mathematicians have been involved in this service as reviewers or editors and have, like all mathematicians, left their footprints in ZBMATH, in a long list of entries describing all of their research publications in mathematics. This book provides one review from each of the 80 years of ZBMATH. Names like Courant, Kolmogorov, Hardy, Hirzebruch, Faltings and many others can be found here. In addition to the original reviews, the book offers the authors' profiles indicating their co-authors, their favorite journals and the time span of their publication activities. In addition to this, a generously illustrated essay by Silke Göbel describes the history of ZBMATH.
The AMS-IMS-SIAM Summer Research Conference on Integer Points in Polyhedra took place in Snowbird (UT). This proceedings volume contains original research and survey articles stemming from that event. Topics covered include commutative algebra, optimization, discrete geometry, statistics, representation theory, and symplectic geometry. The book is suitable for researchers and graduate students interested in combinatorial aspects of the above fields.
Liberals represent a large majority of American faculty, especially in the social sciences and humanities. Does minority status affect the work of conservative scholars or the academy as a whole? In Passing on the Right, Dunn and Shields explore the actual experiences of conservative academics, examining how they navigate their sometimes hostile professional worlds. Offering a nuanced picture of this political minority, this book will engage academics and general readers on both sides of the political spectrum.
"Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification o...
This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.
This volume presents a collection of articles that are based on talks delivered at the International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms held in Frutillar, Chile in December 2007. The theory of quadratic forms is closely connected with a broad spectrum of areas in algebra and number theory. The articles in this volume deal mainly with questions from the algebraic, geometric, arithmetic, and analytic theory of quadratic forms, and related questions in algebraic group theory and algebraic geometry.