Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Lectures on the Geometry of Manifolds
  • Language: en
  • Pages: 606

Lectures on the Geometry of Manifolds

The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytica...

Notes on Seiberg-Witten Theory
  • Language: en
  • Pages: 504

Notes on Seiberg-Witten Theory

After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.

An Invitation to Morse Theory
  • Language: en
  • Pages: 366

An Invitation to Morse Theory

This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.

Introduction to Real Analysis
  • Language: en

Introduction to Real Analysis

This is a text that develops calculus "from scratch", with complete rigorous arguments. Its aim is to introduce the reader not only to the basic facts about calculus but, as importantly, to mathematical reasoning. It covers in great detail calculus of one variable and multivariable calculus. Additionally it offers a basic introduction to the topology of Euclidean space. It is intended to more advanced or highly motivated undergraduates.

Introduction to Geometric Probability
  • Language: en
  • Pages: 196

Introduction to Geometric Probability

The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.

Notes on Elementary Probability
  • Language: en
  • Pages: 309

Notes on Elementary Probability

  • Type: Book
  • -
  • Published: 2018-10-20
  • -
  • Publisher: Unknown

These are notes for the undergraduate probability class I have taught at the University of Notre Dame for several years. They cover the topics required for the actuaries Exam-p. I believe that the best way to understand probability is from examples and computer simulations. The book contains many classical examples and we have included the short R-programs used for class simulations. For this reason, the last chapter of the book offers a very basic introduction to R. We have included many exercises, of varied difficulty, inspired from undergraduate courses in North America and Europe. The complete solutions are contained in Appendix B of the book.

Lectures on the Topology of 3-manifolds
  • Language: en
  • Pages: 220

Lectures on the Topology of 3-manifolds

None

Lectures on Morse Homology
  • Language: en
  • Pages: 330

Lectures on Morse Homology

This book offers a detailed presentation of results needed to prove the Morse Homology Theorem using classical techniques from algebraic topology and homotopy theory. The text presents results that were formerly scattered in the mathematical literature, in a single reference with complete and detailed proofs. The core material includes CW-complexes, Morse theory, hyperbolic dynamical systems (the Lamba-Lemma, the Stable/Unstable Manifold Theorem), transversality theory, the Morse-Smale-Witten boundary operator, and Conley index theory.

Lie Groups, Lie Algebras, and Representations
  • Language: en
  • Pages: 376

Lie Groups, Lie Algebras, and Representations

This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the...

Lectures On Advanced Mathematical Methods For Physicists
  • Language: en
  • Pages: 289

Lectures On Advanced Mathematical Methods For Physicists

This book presents a survey of Topology and Differential Geometry and also, Lie Groups and Algebras, and their Representations. The first topic is indispensable to students of gravitation and related areas of modern physics (including string theory), while the second has applications in gauge theory and particle physics, integrable systems and nuclear physics.Part I provides a simple introduction to basic topology, followed by a survey of homotopy. Calculus of differentiable manifolds is then developed, and a Riemannian metric is introduced along with the key concepts of connections and curvature. The final chapters lay out the basic notions of simplicial homology and de Rham cohomology as w...