You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, the first high-speed silicon-organic hybrid (SOH) modulator is demonstrated by exploiting a highly-nonlinear polymer cladding and a silicon waveguide. By using a liquid crystal cladding instead, an ultra-low power phase shifter is obtained. A third type of device is proposed for achieving three-wave mixing on the silicon-organic hybrid (SOH) platform. Finally, new physical constants which describe the optical absorption in charge accumulation/inversion layers in silicon are determined.
Optical communication systems carry the bulk of all data traffic worldwide. This book introduces multi-Terabit/s transmission systems and three key technologies for next generation networks. A software-defined multi-format transmitter, an optical comb source and an optical processing scheme for the fast Fourier transform for Tbit/s signals. Three world records demonstrate the potential: The first single laser 10 Tbit/s and 26 Tbit/s OFDM and the first 32.5 Tbit/s Nyquist WDM experiments.
Future access networks are converged optical-wireless networks, where fixed-line and wireless services share the same infrastructure. In this book, semiconductor optical amplifiers (SOA) and mm-wave wireless links are investigated, and their use in converged access networks is explored: SOAs compensate losses in the network, and thereby extend the network reach. Millimeter-wave wireless links substitute fiber links when cabling is not economical.
In this book, silicon photonic integrated circuits are combined with electro-optic organic materials for realizing energy-efficient modulators with unprecedented performance. These silicon-organic hybrid Mach-Zehnder modulators feature a compact size, sub-Volt drive voltages, and they support data rates up to 84 Gbit/s. In addition, a wet chemical waveguide fabrication scheme and an efficient fiber-chip coupling scheme are presented.
Self-coherent receivers are promising candidates for reception of 100 Gbit/s data rates in optical networks. Self-coherent receivers consist of multiple optical delay interferometers (DI) with high-speed photodiodes attached to the outputs. By DSP of the photo currents it becomes possible to receive coherently modulated optical signals. Especially promising for 100 Gbit/s networks is the PolMUX DQPSK format, the self-coherent reception of which is described in detail.
In this book, semiconductor optical amplifiers (SOAs) are studied with a view to linear and nonlinear applications in next-generation optical networks. Quantum-dot SOAs can be optimized for linear amplification of signals with different modulation formats and multiplexing techniques. Conversely, bulk SOAs can be easily optimized for operation in the nonlinear regime. However, due to the fast carrier recovery times in QD SOAs we also look into nonlinear applications with these devices.
In this book, nonlinear silicon-organic hybrid waveguides and quantum dot semiconductor optical amplifiers are investigated. Advantageous applications are identified, and corresponding proof-of-principle experiments are performed. Highly nonlinear silicon-organic hybrid waveguides show potential for all-optical signal processing based on fourwave mixing and cross-phase modulation. Quantum dot semiconductor optical amplifiers operate as linear amplifiers with a very large dynamic range.
This book targets engineers and researchers familiar with basic computer architecture concepts who are interested in learning about on-chip networks. This work is designed to be a short synthesis of the most critical concepts in on-chip network design. It is a resource for both understanding on-chip network basics and for providing an overview of state of the-art research in on-chip networks. We believe that an overview that teaches both fundamental concepts and highlights state-of-the-art designs will be of great value to both graduate students and industry engineers. While not an exhaustive text, we hope to illuminate fundamental concepts for the reader as well as identify trends and gaps ...
To create photonic multi-chip modules, integrated photonic chips need to be connected internally and to external glass fibers. A novel approach to address this task is the concept of photonic wire bonding, where free-standing polymer waveguides are printed in-situ by two-photon polymerization. This book contains a detailed description of the methodology of photonic wire bonding together with a number of key experiments.
In recent years, there has been a considerable amount of effort, both in industry and academia, focusing on the design, implementation, performance analysis, evaluation and prediction of silicon photonic interconnects for inter- and intra-chip communication, paving the way for the design and dimensioning of the next and future generation of high-performance computing systems. Photonic Interconnects for Computing Systems provides a comprehensive overview of the current state-of-the-art technology and research achievements in employing silicon photonics for interconnection networks and high-performance computing, summarizing main opportunities and some challenges. The majority of the chapters ...