You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics.Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classic...
This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.
Professor L. D. Faddeev's seminar at Steklov Mathematical Institute (St. Petersburg, Russia) has a long history of over 30 years of intensive work which shaped modern mathematical physics. This collection, honoring Professor Faddeev's 65th anniversary, has been prepared by his students and colleagues. Topics covered in the volume include classical and quantum integrable systems (both analytic and algebraic aspects), quantum groups and generalizations, quantum field theory, and deformation quantization. Included is a history of the seminar highlighting important developments, such as the invention of the quantum inverse scattering method and of quantum groups. The book will serve nicely as a comprehensive, up-to-date resource on the topic.
In this monograph we study the problem of construction of asymptotic solutions of equations for functions whose number of arguments tends to infinity as the small parameter tends to zero. Such equations arise in statistical physics and in quantum theory of a large number of fi elds. We consider the problem of renormalization of quantum field theory in the Hamiltonian formalism, which encounters additional difficulties related to the Stückelberg divergences and the Haag theorem. Asymptotic methods for solving pseudodifferential equations with small parameter multiplying the derivatives, as well as the asymptotic methods developed in the present monograph for solving problems in statistical physics and quantum field theory, can be considered from a unified viewpoint if one introduces the notion of abstract canonical operator. The book can be of interest for researchers – specialists in asymptotic methods, statistical physics, and quantum fi eld theory as well as for graduate and undergraduate students of these specialities.
Publisher Description
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
Biographic Memoirs Volume 91 contains the biographies of deceased members of the National Academy of Sciences and bibliographies of their published works. Each biographical essay was written by a member of the Academy familiar with the professional career of the deceased. For historical and bibliographical purposes, these volumes are worth returning to time and again.
This book addresses some of the problems of interpreting Schrdinger's mechanics ? the most complete and explicit theory falling under the umbrella of ?quantum theory?. The outlook is materialist (?realist?) and stresses the development of Schrdinger's mechanics from classical theories and its close connections with (particularly) the Hamilton?Jacobi theory. Emphasis is placed on the concepts and use of the modern objective (measure-theoretic) probability theory. The work is free from any mention of the bearing of Schrdinger's mechanics on God, his alleged mind or, indeed, minds at all. The author has taken the nave view that this mechanics is about the structure and dynamics of atomic and sub-atomic systems since he has been unable to trace any references to minds, consciousness or measurements in the foundations of the theory.
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.