You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Systems driven far from thermodynamic equilibrium can create dissipative structures through the spontaneous breaking of symmetries. A particularly fascinating feature of these pattern-forming systems is their tendency to produce spatially confined states. These localized wave packets can exist as propagating entities through space and/or time. Various examples of such systems will be dealt with in this book, including localized states in fluids, chemical reactions on surfaces, neural networks, optical systems, granular systems, population models, and Bose-Einstein condensates. This book should appeal to all physicists, mathematicians and electrical engineers interested in localization in far-from-equilibrium systems. The authors - all recognized experts in their fields - strive to achieve a balance between theoretical and experimental considerations thereby giving an overview of fascinating physical principles, their manifestations in diverse systems, and the novel technical applications on the horizon.
An in-depth exploration of the dynamics of lasers and other relevant optical systems for graduate students and researchers.
A modern up-to-date introduction for readers outside statistical physics. It puts emphasis on a clear understanding of concepts and methods and provides the tools that can be of immediate use in applications.
A collection of prestigious postgraduate lectures, Nonlinear Dynamics and Spatial Complexity in Optical Systems reviews developments in the theory and practice of nonlinear dynamics and structural complexity, and explores modern-day applications in nonlinear optics. The book addresses systems including both singlemode and multimode lasers, bistable and multistable devices, optical fibers, counter-propagating beam interactions, nonlinear mixing, and related optical phenomena.
The vulnerability of our civilization to earthquakes is rapidly growing, rais ing earthquakes to the ranks of major threats faced by humankind. Earth quake prediction is necessary to reduce that threat by undertaking disaster preparedness measures. This is one of the critically urgent problems whose solution requires fundamental research. At the same time, prediction is a ma jor tool of basic science, a source of heuristic constraints and the final test of theories. This volume summarizes the state-of-the-art in earthquake prediction. Its following aspects are considered: - Existing prediction algorithms and the quality of predictions they pro vide. - Application of such predictions for dama...
Progress in Optics, Volume 68 highlights new advances in the field of optics, with this updated volume presenting interesting chapters on a variety of timely topics in the field. Chapters in this release include Nonlinear Optical Polarimetry with application in biomicroscopy, Single-photon Sources, Introduction to Tensor Networks and Matrix Product States with Applications in Cavity and Waveguide Quantum Electrodynamics, Rotated frames, Phase retrieval, and more. Each chapter is written by an international board of authors who review the latest developments in optics. - Covers medical imaging, physical optics, integrated optics and quantum optics - Includes contributions from leading authorities in the field of optics - Presents timely, state-of-the-art reviews on advances in optics
We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. W...
This book gives an overview of the latest progress in the domain of quantum imaging. It reflects three and a half years of research carried out by leading specialists in the area within the Quantum Imaging network, a research programme of the European Community. Quantum Imaging is a newly born branch of quantum optics that investigates the ultimate performance limits of optical imaging allowed by the laws of quantum mechanics. Using the methods and techniques from quantum optics, quantum imaging addresses the questions of image formation, processing and detection with sensitivity and resolution exceeding the limits of classical imaging.
This volume serves as a general introduction to the state of the art of quantitatively characterizing chaotic and turbulent behavior. It is the outgrowth of an international workshop on "Quantitative Measures of Dynamical Complexity and Chaos" held at Bryn Mawr College, June 22-24, 1989. The workshop was co-sponsored by the Naval Air Development Center in Warminster, PA and by the NATO Scientific Affairs Programme through its special program on Chaos and Complexity. Meetings on this subject have occurred regularly since the NATO workshop held in June 1983 at Haverford College only two kilometers distant from the site of this latest in the series. At that first meeting, organized by J. Gollub...