You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
Combining research methods from various areas of mathematics and physics, Probabilistic Models of Cosmic Backgrounds describes the isotropic random sections of certain fibre bundles and their applications to creating rigorous mathematical models of both discovered and hypothetical cosmic backgrounds. Previously scattered and hard-to-find mathematical and physical theories have been assembled from numerous textbooks, monographs, and research papers, and explained from different or even unexpected points of view. This consists of both classical and newly discovered results necessary for understanding a sophisticated problem of modelling cosmic backgrounds. The book contains a comprehensive des...
This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.
Dedicated to the Russian mathematician Albert Shiryaev on his 70th birthday, this is a collection of papers written by his former students, co-authors and colleagues. The book represents the modern state of art of a quickly maturing theory and will be an essential source and reading for researchers in this area. Diversity of topics and comprehensive style of the papers make the book attractive for PhD students and young researchers.
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference...
None
This book presents the latest trends and challenges in the development of general engineering and mechanical engineering in the agriculture and horticulture sectors.
Welding processes handbookis an introductory guide to all of the main welding processes. It is specifically designed for students on EWF courses and newcomers to welding and is suitable as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and the important areas of welded joint design, quality assurance and costing are also covered in detail.
The topic covered in this book is the study of metric and other close characteristics of different spaces and classes of random variables and the application of the entropy method to the investigation of properties of stochastic processes whose values, or increments, belong to given spaces. The following processes appear in detail: pre-Gaussian processes, shot noise processes representable as integrals over processes with independent increments, quadratically Gaussian processes, and, in particular, correlogram-type estimates of the correlation function of a stationary Gaussian process, jointly strictly sub-Gaussian processes, etc. The book consists of eight chapters divided into four parts: ...
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.