You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked.
This volume consists of lectures highlighting fundamentals of advances in superconducting materials, related technologies and applications. Theory, fundamental aspects, advances in materials synthesis, processing and properties are featured, as well as current developments of superconducting components and devices.Both HTC and LTC superconducting materials are discussed. Several years after the discovery of high Tc superconductivity and a multinational effort in its study, this book collects the main results on the subject and presents a state-of-the-art view of the correlations between crystal chemistry and physical properties.
These Proceedings of a NATO-ARW (HTECH ARW 97 1843) held at the Oreanda Hotel, Yalta, Ukraine from April 29 till May 2 , 1998 resulted from many discussions between various workers, concerning the need for a gathering of all (if possible) who were concerned with the subject of symmetry of the order parameter and pairing states for superconductivity. We applied ourselves in particular to High critical Temperature Superconductors (HTS), but also studied other unconventional superconductors. The study of HTS is one of the most prominent research subjects in solid state sciences. The understanding of the role of symmetry and pairing conditions are also thought to be necessary before technologica...
Proceedings of the NATO Advanced Research Workshop on Ferrimagnetic Nano-crystalline and Thin Film Magnetooptical and Microwave Materials, Sozopol, Bulgaria, 27 September - 3 October, 1998
In recent years statistical physics has made significant progress as a result of advances in numerical techniques. While good textbooks exist on the general aspects of statistical physics, the numerical methods and the new developments based on large-scale computing are not usually adequately presented. In this book 16 experts describe the application of methods of statistical physics to various areas in physics such as disordered materials, quasicrystals, semiconductors, and also to other areas beyond physics, such as financial markets, game theory, evolution, and traffic planning, in which statistical physics has recently become significant. In this way the universality of the underlying concepts and methods such as fractals, random matrix theory, time series, neural networks, evolutionary algorithms, becomes clear. The topics are covered by introductory, tutorial presentations.
A discussion by an assembly of expert physicists and materials scientists, embracing the specific features of vortex-pin interactions, the modes of different kinds of vortex motion under the action of Lorenz force, and the mechanisms of dissipation. The effects of transport and screening currents, superimposed AC magnetic fields and the microwave electromagnetic irradiation on vortex behaviour define the electromagnetic properties of a high-Tc superconducting material. The mechanisms driving the depinning of vortices and the dynamics of their motion determine the critical current density and its file dependence, the mechanisms of energy dissipation, and linear and nonlinear resistivity, AC losses, and noise in electronic circuitry. The book therefore has direct implications for the development of new devices and components in electrical engineering, modern electronics, computer technology, and microwave communication.
Optical Properties of Metal Clusters deals with the electronic structure of metal clusters determined optically. Clusters - as state intermediate between molecules and the extended solid - are important in many areas, e.g. in air pollution, interstellar matter, clay minerals, photography, heterogeneous catalysis, quantum dots, and virus crystals. This book extends the approaches of optical molecular and solid-state methods to clusters, revealing how their optical properties evolve as a function of size. Cluster matter, i.e. extended systems of many clusters - the most frequently occuring form - is also treated. The combination of reviews of experimental techniques, lists of results and detailed descriptions of selected experiments will appeal to experts, newcomers and graduate students in this expanding field.
This book presents the works and research findings of physicists, economists, mathematicians, statisticians, and financial engineers who have undertaken data-driven modelling of market dynamics and other empirical studies in the field of Econophysics. During recent decades, the financial market landscape has changed dramatically with the deregulation of markets and the growing complexity of products. The ever-increasing speed and decreasing costs of computational power and networks have led to the emergence of huge databases. The availability of these data should permit the development of models that are better founded empirically, and econophysicists have accordingly been advocating that on...
This book presents the Proceedings of the 54th Winter School of Theoretical Physics on Simplicity of Complexity in Economic and Social Systems, held in Lądek Zdrój, Poland, from 18 to 24 February 2018. The purpose of the book is to introduce the new interdisciplinary research that links statistical physics, and particular attention is given to link physics of complex systems, with financial analysis and sociology. The main tools used in these areas are numerical simulation of agents behavior and the interpretation of results with the help of complexity methods, therefore a background in statistical physics and in physics of phase transition is necessary to take the first steps towards these research fields called econophysics and sociophysics. In this perspective, the book is intended to graduated students and young researchers who want to begin the study of this established new area, which connects physicists, economists, sociologists and IT professionals, to better understand complexity phenomena existing not only in physics but also in complex systems being seemingly far from traditional view at physics.
Physics and Materials Science of High Temperature Superconductors, II represents the results of a fruitful dialogue between physicists and materials scientists which took place under the auspices of a NATO Advanced Study Institute in Porto Carras, Greece, between 18 and 31 August, 1991. It builds on and carries forward the success of NATO ASI 181 published in 1990. The theoretical side of the discussions reveal the basic premise of the phenomenological and Ginzburg-Landau theories of superconductivity, the implications of short coherence length, long penetration depth, the melting of flux lattices, and other matters, while the materials science includes discussions of microstructures, local ...