You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
One of the most important elements of U.S. military strategy for the past 10 years has been the belief that a force able to fight two nearly simultaneous major theater wars of the DESERT STORM type would be capable of dealing with the full gamut of security challenges that the United States is likely to face. These essays from a wide range of scholars, analysts, government officials, and uniformed thinkers represent their views of the question of a force shaping paradigm for the U.S. military. They vary widely on assumptions, analytical parameters, and recommendations.
Advanced Topics in Shannon Sampling and Interpolation Theory is the second volume of a textbook on signal analysis solely devoted to the topic of sampling and restoration of continuous time signals and images. Sampling and reconstruction are fundamental problems in any field that deals with real-time signals or images, including communication engineering, image processing, seismology, speech recognition, and digital signal processing. This second volume includes contributions from leading researchers in the field on such topics as Gabor's signal expansion, sampling in optical image formation, linear prediction theory, polar and spiral sampling theory, interpolation from nonuniform samples, an extension of Papoulis's generalized sampling expansion to higher dimensions, and applications of sampling theory to optics and to time-frequency representations. The exhaustive bibliography on Shannon sampling theory will make this an invaluable research tool as well as an excellent text for students planning further research in the field.
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, proposition...
Evolution of Systems in Random Media is an innovative, application-oriented text that explores stochastic models of evolutionary stochastic systems in random media. Specially designed for researchers and practitioners who do not have a background in random evolutions, the book allows non-experts to explore the potential information and applications that random evolutions can provide.
Asymptotic solution behavior and relevant limit equations are studied for a broad class of nonautonomous hereditary equations. These problems are presented on a function space consisting of locally integrable functions defined on semi-axes of the reals, and the operators occurring in the equations map this function space into the space of continuous functions--in a 'nonanticipative' manner.