You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive inequalities with respect to the Markov process given by the word length and with an even integer. Interpolation and differentiation also yield general hypercontrativity for via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part—which varies from one group to another—is implemented and tested on a comp...
This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27–October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory. The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher ca...
This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15, 2012, in El Escorial, Madrid, Spain. Included in this volume is the written version of the mini-course given by Jonathan Bennett on Aspects of Multilinear Harmonic Analysis Related to Transversality. Also included, among other papers, is a paper by Emmanouil Milakis, Jill Pipher, and Tatiana Toro, which reflects and extends the ideas presented in the mini-course on Analysis on Non-smooth Domains delivered at the conference by Tatiana Toro. The topics of the contributed lectures cover a wide range of the field of Harmonic Analysis and Partial Differential Equations and illustrate the fruitful interplay between the two subfields.
View the abstract.
An introduction to the theory of operator spaces, emphasising applications to C*-algebras.
Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing.
Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.
"Volume 209, number 984 (third of 5 numbers)."
In this article the authors study Hamiltonian flows associated to smooth functions R R restricted to energy levels close to critical levels. They assume the existence of a saddle-center equilibrium point in the zero energy level . The Hamiltonian function near is assumed to satisfy Moser's normal form and is assumed to lie in a strictly convex singular subset of . Then for all small, the energy level contains a subset near , diffeomorphic to the closed -ball, which admits a system of transversal sections , called a foliation. is a singular foliation of and contains two periodic orbits and as binding orbits. is the Lyapunoff orbit lying in the center manifold of , has Conley-Zehnder index and spans two rigid planes in . has Conley-Zehnder index and spans a one parameter family of planes in . A rigid cylinder connecting to completes . All regular leaves are transverse to the Hamiltonian vector field. The existence of a homoclinic orbit to in follows from this foliation.