You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Every one relies on some kind of transportation system nearly every day. Go ing to work, shopping, dropping children at school and many other cultural or social activities imply leaving home, and using some form of transportation, which we expect tobe eflicient and reliable. Of course, efliciency and reliabil ity do not occur by chance, but require careful and often relatively complex planning by transportation system managers, both in the public and private sectors. It has long been recognized that mathematics, and, more specifically, op erations research is an important tool of this planning process. However, the range of skills required to cover both fields, even partially, is very large,...
Over the past thirty-five years, a tremendous body of both theoretical and empirical research has been established on the `science of transportation'. The Handbook of Transportation Science has collected and synthesized this research into a systematic treatment of this field covering its fundamental concepts, methods, and principles. The purpose of this handbook is to define transportation as a scientific discipline that transcends transportation technology and methods. Whether by car, truck, airplane - or by a mode of transportation that has not yet been conceived - transportation obeys fundamental properties. The science of transportation defines these properties, and demonstrates how our ...
Most ocean vessels are underactuated but control of their motion in the real ocean environment is essential. Starting with a review of the background on ocean-vessel dynamics and nonlinear control theory, the authors’ systematic approach is based on various nontrivial coordinate transformations coupled with advanced nonlinear control design methods. This strategy is then used for the development and analysis of a number of ocean-vessel control systems with the aim of achieving advanced motion control tasks including stabilization, trajectory-tracking, path-tracking and path-following. Control of Ships and Underwater Vehicles offers the reader: - new results in the nonlinear control of underactuated ocean vessels; - efficient designs for the implementation of controllers on underactuated ocean vessels; - numerical simulations and real-time implementations of the control systems designed on a scale-model ship for each controller developed to illustrate their effectiveness and afford practical guidance.
The 17 chapters in this book, which evolved from a conference on measuring the contributions of ITS sponsored by the California Department of Transportation in February 2002, examine the costs and benefits of ITS in an economic and business policy context. Section 1 examines the broad theme of how and what ITS contributes to the economy and how one makes a business case for ITS. Section 2 includes three chapters on ITS applications in mass transit. Section 3 explores ITS applications in the automobile/highway system. Section 4 considers integrative issues including how ITS is perceived and how it can be positioned to improve surface transportation. This volume will be especially useful to researchers and policy makers working in transportation, transportation engineering, and the economic analysis of transportation systems.
Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors’ background in automotive technology gives the work added authority as a vital element of future planning.
This book develops a methodology for designing feedback control laws for dynamic traffic assignment (DTA) exploiting the introduction of new sensing and information-dissemination technologies to facilitate the introduction of real-time traffic management in intelligent transportation systems. Three methods of modeling the traffic system are discussed: partial differential equations representing a distributed-parameter setting; continuous-time ordinary differential equations (ODEs) representing a continuous-time lumped-parameter setting; and discreet-time ODEs representing a discrete-time lumped-parameter setting. Feedback control formulations for reaching road-user-equilibrium are presented ...
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ..., new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The water and wastewater ind...
This book lays the foundation for the study of input-to-state stability (ISS) of partial differential equations (PDEs) predominantly of two classes—parabolic and hyperbolic. This foundation consists of new PDE-specific tools. In addition to developing ISS theorems, equipped with gain estimates with respect to external disturbances, the authors develop small-gain stability theorems for systems involving PDEs. A variety of system combinations are considered: PDEs (of either class) with static maps; PDEs (again, of either class) with ODEs; PDEs of the same class (parabolic with parabolic and hyperbolic with hyperbolic); and feedback loops of PDEs of different classes (parabolic with hyperboli...
This edited book focuses on recent developments in Dynamic Network Modeling, including aspects of route guidance and traffic control as they relate to transportation systems and other complex infrastructure networks. Dynamic Network Modeling is generally understood to be the mathematical modeling of time-varying vehicular flows on networks in a fashion that is consistent with established traffic flow theory and travel demand theory. Dynamic Network Modeling as a field has grown over the last thirty years, with contributions from various scholars all over the field. The basic problem which many scholars in this area have focused on is related to the analysis and prediction of traffic flows sa...
In recent years, the transport simulation of large road networks has become far more rapid and detailed, and many exciting developments in this field have emerged. Within this volume, the authors describe the simulation of automobile, pedestrian, and rail traffic coupled to new applications, such as the embedding of traffic simulation into driving simulators, to give a more realistic environment of driver behavior surrounding the subject vehicle. New approaches to traffic simulation are described, including the hybrid mesoscopic-microscopic model and floor-field agent-based simulation. Written by an invited panel of experts, this book addresses students, engineers, and scholars, as well as anyone who needs a state-of-the-art overview of transport simulation today.