You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An area at the intersection of solid mechanics, materials science, and stochastic mathematics, mechanics of materials often necessitates a stochastic approach to grasp the effects of spatial randomness. Using this approach, Microstructural Randomness and Scaling in Mechanics of Materials explores numerous stochastic models and methods used in the m
A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.
Presents a complete description of homogenous and isotropic tensor-valued random fields, including the problems of continuum physics, mathematical tools and applications.
This book reviews recent theoretical, computational and experimental developments in mechanics of random and multiscale solid materials. The aim is to provide tools for better understanding and prediction of the effects of stochastic (non-periodic) microstructures on materials’ mesoscopic and macroscopic properties. Particular topics involve a review of experimental techniques for the microstructure description, a survey of key methods of probability theory applied to the description and representation of microstructures by random modes, static and dynamic elasticity and non-linear problems in random media via variational principles, stochastic wave propagation, Monte Carlo simulation of random continuous and discrete media, fracture statistics models, and computational micromechanics.
Random fields are a necessity when formulating stochastic continuum theories. In this book, a theory of random piezoelectric and piezomagnetic materials is developed. First, elements of the continuum mechanics of electromagnetic solids are presented. Then the relevant linear governing equations are introduced, written in terms of either a displacement approach or a stress approach, along with linear variational principles. On this basis, a statistical description of second-order (statistically) homogeneous and isotropic rank-3 tensor-valued random fields is given. With a group-theoretic foundation, correlation functions and their spectral counterparts are obtained in terms of stochastic integrals with respect to certain random measures for the fields that belong to orthotropic, tetragonal, and cubic crystal systems. The target audience will primarily comprise researchers and graduate students in theoretical mechanics, statistical physics, and probability.
In their 1909 publication Théorie des corps déformables, Eugène and François Cosserat made a historic contribution to materials science by establishing the fundamental principles of the mechanics of generalized continua. The chapters collected in this volume showcase the many areas of continuum mechanics that grew out of the foundational work of the Cosserat brothers. The included contributions provide a detailed survey of the most recent theoretical developments in the field of generalized continuum mechanics and can serve as a useful reference for graduate students and researchers in mechanical engineering, materials science, applied physics and applied mathematics.
Our intention in preparing this book was to present in as simple a manner as possible those branches of error analysis which ?nd direct applications in solving various problems in engineering practice. The main reason for writing this text was the lack of such an approach in existing books dealing with the error calculus. Most of books are devoted to mathematical statistics and to probability theory. The range of applications is usually limited to the problems of general statistics and to the analysis of errors in various measuring techniques. Much less attention is paid in these books to two-dimensional and three-dim- sional distributions, and almost no attention is given to problems connected with the two-dimensional and three-dimensional vectorial functions of independent random variables. The theory of such vectorial functions ?nds new applications connected, for example, with analysis of the positioning accuracy of various mechanisms, among them of robot manipulators and automatically controlled earth-moving and loading machines, such as excavators.
The monograph "Micropolar Theory of Elasticity" is devoted to the asymmetric theory of elasticity and thermoelasticity, aiming at researchers and postgraduate students in solid mechanics and applied mathematics, as well as mechanical engineers. It offers various new results including the basic field equations, general methods of integration of basic equations, formulations of problems, as well as solutions to particular problems. The presented general solutions cover those of Galerkin, Green-Lamé and Papkovitch-Neuber type, whereas the formulations include the displacement-rotation problems as well as pure stress problems of asymmetric elastodynamics. Solutions to stationary 3D and 2D problems for a half-space, and singular solutions to 3D and 2D asymmetric elastodynamics and the thermoelasto-dynamics problems for an infinite space are given.
This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, rev...
This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis o...