You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, a precise treatment of the experimental characterization of advanced composite materials using Digital Image Correlation (DIC) is presented. The text explains test methods, testing setup with 2D- and stereo-DIC, specimen preparation and patterning, testing analysis and data reduction schemes to determine and to compare mechanical properties, such as modulus, strength and fracture toughness of advanced composite materials. Sensitivity and uncertainty studies on the DIC calculated data and mechanical properties for a detailed engineering-based understanding are covered instead of idealized theories and sugarcoated results. The book provides students, instructors, researchers and ...
Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 5 of the Proceedings of the 2019 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Recycled Constituent Composites Damage Detection Advanced Imaging of Composites Multifunctional Materials Composite Interfaces Tunable Composites
The Ceramic Engineering and Science Proceeding has been published by The American Ceramic Society since 1980. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
The main objective of this work is to significantly deepen the understanding of the material and the structural behaviour of continuous-discontinuous SMC composites, following a holistic approach to investigate microscopic aspects, macroscopic mechanical behaviour as well as failure evolution at the coupon, structure and component level. In addition, criteria to evaluate the effect of hybridisation are introduced and modelling approaches are presented and discussed.
Selected, peer reviewed papers from the 20th Symposium on Composites, July 1-3, 2015, Vienna, Austria
Phase II: Integration
The 1/2111 screw dislocations in bcc iron are studied by atomistic simulations. An analytical yield criterion captures correctly the non-Schmid plastic behavior. A model Peierls potential develops a link between the atomistic modeling at 0 K and the thermally activated dislocation motion. All predicted features agree well with experimental observations. This work establishes a consistent bottom-up model that provides an insight into the microscopic origins of the plastic behavior of bcc iron.
In this work, the ratcheting-behavior of 9%Cr-1%Mo ferritic-martensitic steel is studied with uniaxial cyclic loading. To describe the ratcheting-behavior of this steel, a visco-plastic constitutive model with consideration of cyclic softening of Reduced Activation Ferritic Martensitic steels is further modified, based on the analysis of back stress.
To determine the characteristics and properties of cellular solids for an application, and to allow a systematic practical use by means of correlations and modelling approaches, we perform experimental investigations and develop numerical methods. In view of coupled multi-physics simulations, we employ the phase-field method. Finally, the applicability is demonstrated exemplarily for open-cell metal foams, providing qualitative and quantitative comparison with experimental data.
Water diffusing into silica surfaces gives rise for several effects on diffusion behaviour and mechanical properties. In a preceding booklet, we focused on diffusion and fiber strengths and deformations which were obtained by water soaking under external loading. In the present booklet we deal with results and interpretations of strength increase in the absence of applied stresses.