You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book marries social work and artificial intelligence to provide an introductory guide for using AI for social good. Following an introductory chapter laying out approaches and ethical principles of using AI for social work interventions, the book describes in detail an intervention to increase the spread of HIV information by using algorithms to determine the key individuals in a social network of homeless youth. Other chapters present interdisciplinary collaborations between AI and social work students, including a chatbot for sexual health information and algorithms to determine who is at higher stress among persons with Type 2 Diabetes. For students, academic researchers, industry leaders, and practitioners, these real-life examples from the USC Center for Artificial Intelligence in Society demonstrate how social work and artificial intelligence can be used in tandem for the greater good.
With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization.
Global threats of terrorism, drug-smuggling and other crimes have led to a significant increase in research on game theory for security. Game theory provides a sound mathematical approach to deploy limited security resources to maximize their effectiveness. A typical approach is to randomize security schedules to avoid predictability, with the randomization using artificial intelligence techniques to take into account the importance of different targets and potential adversary reactions. This book distills the forefront of this research to provide the first and only study of long-term deployed applications of game theory for security for key organizations such as the Los Angeles International Airport police and the US Federal Air Marshals Service. The author and his research group draw from their extensive experience working with security officials to intelligently allocate limited security resources to protect targets, outlining the applications of these algorithms in research and the real world.
Challenges arise when the size of a group of cooperating agents is scaled to hundreds or thousands of members. In domains such as space exploration, military and disaster response, groups of this size (or larger) are required to achieve extremely complex, distributed goals. To effectively and efficiently achieve their goals, members of a group need to cohesively follow a joint course of action while remaining flexible to unforeseen developments in the environment. Coordination of Large-Scale Multiagent Systems provides extensive coverage of the latest research and novel solutions being developed in the field. It describes specific systems, such as SERSE and WIZER, as well as general approaches based on game theory, optimization and other more theoretical frameworks. It will be of interest to researchers in academia and industry, as well as advanced-level students.
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities o...
This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of ...
The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.
As intelligent autonomous agents and multiagent system applications become more pervasive, it becomes increasingly important to understand the risks associated with using these systems. Incorrect or inappropriate agent behavior can have harmful - fects, including financial cost, loss of data, and injury to humans or systems. For - ample, NASA has proposed missions where multiagent systems, working in space or on other planets, will need to do their own reasoning about safety issues that concern not only themselves but also that of their mission. Likewise, industry is interested in agent systems that can search for new supply opportunities and engage in (semi-) automated negotiations over new...
Are we safer from terrorism today and is our homeland security money well spent? This book offers answers and more.
Because of the clearly important role cooperative systems play in areas such as military sciences, biology, communications, robotics, and economics, just to name a few, the study of cooperative systems has intensified. This book provides an insight in the basic understanding of cooperative systems as well as in theory, modeling, and applications of cooperative control, optimization and related problems.