You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Lagrangian mechanics is widely used in several areas of research and technology. It is simply a reformulation of the classical mechanics by the mathematician and astronomer Joseph-Louis Lagrange in 1788. Since then, this approach has been applied to various fields. In this book, the section authors provide state-of-the-art research studies on Lagrangian mechanics. Hopefully, the researchers will benefit from the book in conducting their studies.
Comprehensive graduate text offering a detailed mathematical treatment of polynomial splines on triangulations.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering top...
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature.
In this lecture, we study Bézier and B-spline curves and surfaces, mathematical representations for free-form curves and surfaces that are common in CAD systems and are used to design aircraft and automobiles, as well as in modeling packages used by the computer animation industry. Bézier/B-splines represent polynomials and piecewise polynomials in a geometric manner using sets of control points that define the shape of the surface. The primary analysis tool used in this lecture is blossoming, which gives an elegant labeling of the control points that allows us to analyze their properties geometrically. Blossoming is used to explore both Bézier and B-spline curves, and in particular to investigate continuity properties, change of basis algorithms, forward differencing, B-spline knot multiplicity, and knot insertion algorithms. We also look at triangle diagrams (which are closely related to blossoming), direct manipulation of B-spline curves, NURBS curves, and triangular and tensor product surfaces.
The International Conference of Computational Harmonic Analysis, held in Hong Kong during the period of June 4 ? 8, 2001, brought together mathematicians and engineers interested in the computational aspects of harmonic analysis. Plenary speakers include W Dahmen, R Q Jia, P W Jones, K S Lau, S L Lee, S Smale, J Smoller, G Strang, M Vetterlli, and M V Wickerhauser. The central theme was wavelet analysis in the broadest sense, covering time-frequency and time-scale analysis, filter banks, fast numerical computations, spline methods, multiscale algorithms, approximation theory, signal processing, and a great variety of applications.This proceedings volume contains sixteen papers from the lectures given by plenary and invited speakers. These include expository articles surveying various aspects of the twenty-year development of wavelet analysis, and original research papers reflecting the wide range of research topics of current interest.
The subject of multivariate splines has become a rapidly growing field of mathematical research. The author presents the subject from an elementary point of view that parallels the theory and development of univariate spline analysis. To compensate for the missing proofs and details, an extensive bibliography has been included. There is a presentation of open problems with an emphasis on the theory and applications to computer-aided design, data analysis, and surface fitting. Applied mathematicians and engineers working in the areas of curve fitting, finite element methods, computer-aided geometric design, signal processing, mathematical modelling, computer-aided design, computer-aided manufacturing, and circuits and systems will find this monograph essential to their research.
This is the collection of the refereed and edited papers presented at the 8th Texas International Conference on Approximation Theory. It is interdisciplinary in nature and consists of two volumes. The central theme of Vol. I is the core of approximation theory. It includes such important areas as qualitative approximations, interpolation theory, rational approximations, radial-basis functions, and splines. The second volume focuses on topics related to wavelet analysis, including multiresolution and multi-level approximation, subdivision schemes in CAGD, and applications.
Paul Richard Halmos, who lived a life of unbounded devotion to mathematics and to the mathematical community, died at the age of 90 on October 2, 2006. This volume is a memorial to Paul by operator theorists he inspired. Paul’sinitial research,beginning with his 1938Ph.D. thesis at the University of Illinois under Joseph Doob, was in probability, ergodic theory, and measure theory. A shift occurred in the 1950s when Paul’s interest in foundations led him to invent a subject he termed algebraic logic, resulting in a succession of papers on that subject appearing between 1954 and 1961, and the book Algebraic Logic, published in 1962. Paul’s ?rst two papers in pure operator theory appeare...
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometr...