You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This three-volume set, LNAI 10937, 10938, and 10939, constitutes the thoroughly refereed proceedings of the 22nd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2018, held in Melbourne, VIC, Australia, in June 2018. The 164 full papers were carefully reviewed and selected from 592 submissions. The volumes present papers focusing on new ideas, original research results and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems and the emerging applications.
This book constitutes the thoroughly refereed post-workshop proceedings at PAKDD Workshops 2018, held in conjunction with the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2018, in Melbourne, Australia, in June 2018. The 32 revised papers presented were carefully reviewed and selected from 46 submissions. The workshops affiliated with PAKDD 2018 include: Workshop on Big Data Analytics for Social Computing, BDASC, Australasian Workshop on Machine Learning for Cyber-security, ML4Cyber, Workshop on Biologically-inspired Techniques for Knowledge Discovery and Data Mining, BDM, Pacific Asia Workshop on Intelligence and Security Informatics, PAISI, and Workshop on Data Mining for Energy Modeling and Optimization, DaMEMO.
The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
Video has rich information including meta-data, visual, audio, spatial and temporal data which can be analysed to extract a variety of low and high-level features to build predictive computational models using machine-learning algorithms to discover interesting patterns, concepts, relations, and associations. This book includes a review of essential topics and discussion of emerging methods and potential applications of video data mining and analytics. It integrates areas like intelligent systems, data mining and knowledge discovery, big data analytics, machine learning, neural network, and deep learning with focus on multimodality video analytics and recent advances in research/applications...
The 3-volume set LNAI 13280, LNAI 13281 and LNAI 13282 constitutes the proceedings of the 26th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2022, which was held during May 2022 in Chengdu, China. The 121 papers included in the proceedings were carefully reviewed and selected from a total of 558 submissions. They were organized in topical sections as follows: Part I: Data Science and Big Data Technologies, Part II: Foundations; and Part III: Applications.
This book constitutes the refereed conference proceedings of the 23nd International Conference on Principles and Practice of Constraint Programming, CP 2017, held in Melbourne, Australia from August 28, 2017 until September 1, 2017. The conference is colocated with the 20th International Conference on Theory and Applications of Satisfiability Testing (SAT 2017) and the 33rd International Conference on Logic Programming. The 46 revised full papers presented were carefully reviewed and selected from 115 submissions. The scope of the contributions includes all aspects of computing with constraints, including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource al location, scheduling, configuration, and planning. The papers are grouped into the following tracks: technical track; application track; machine learning & CP track; operations research & CP track; satisfiability & CP track, test and verification & CP track; journal & sister conference track.
The three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learning; ensemble methods; and evaluation. Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning. Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
Artificial intelligence (AI) has grown in presence in asset management and has revolutionized the sector in many ways. It has improved portfolio management, trading, and risk management practices by increasing efficiency, accuracy, and compliance. In particular, AI techniques help construct portfolios based on more accurate risk and return forecasts and more complex constraints. Trading algorithms use AI to devise novel trading signals and execute trades with lower transaction costs. AI also improves risk modeling and forecasting by generating insights from new data sources. Finally, robo-advisors owe a large part of their success to AI techniques. Yet the use of AI can also create new risks and challenges, such as those resulting from model opacity, complexity, and reliance on data integrity.
The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.