You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The XV International Conference on Laser Spectroscopy brought together spectroscopists from all over the world working in the very diverse and still growing field of laser spectroscopy. It addressed a large number of modern scientific issues at the highest level.
The First Book on CRS MicroscopyCompared to conventional Raman microscopy, coherent Raman scattering (CRS) allows label-free imaging of living cells and tissues at video rate by enhancing the weak Raman signal through nonlinear excitation. Edited by pioneers in the field and with contributions from a distinguished team of experts, Coherent Raman Sc
This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may mean fewer animal lab tests and clinical trials.
The eighteenth International Conference on Laser Spectroscopy was held on 24-29 June 2007 in Telluride, Colorado. In keeping with its rich tradition, ICOLS-07 was truly an international gathering with 173 delegates and 34 accompanying guests from 21 countries (Australia, Austria, Canada, China, Denmark, France, Germany, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Poland, Russia, South Africa, Sweden, Switzerland, Taiwan, United Kingdom, and the United States).This volume presents the invited talks comprising the technical program of the Conference, arranged in the general topic areas of degenerate quantum gases, quantum information and control, precision measurements, fundamental physics and applications, ultra-fast control and spectroscopy, novel spectroscopic applications, spectroscopy on the small scale, cold atoms and molecules, single atoms and quantum optics, and optical atomic clocks. The vibrant exchange of ideas provided the real strength and foundation of the Conference, especially in areas of the ever-expanding field of laser spectroscopy.
This book deals with applications in several areas of science and technology that make use of light which carries orbital angular momentum. In most practical scenarios, the angular momentum can be decomposed into two independent contributions: the spin angular momentum and the orbital angular momentum. The orbital contribution affords a fundamentally new degree of freedom, with fascinating and wide-spread applications. Unlike spin angular momentum, which is associated with the polarization of light, the orbital angular momentum arises as a consequence of the spatial distribution of the intensity and phase of an optical field, even down to the single photon limit. Researchers have begun to appreciate its implications for our understanding of the ways in which light and matter can interact, and its practical potential in different areas of science and technology.
Seoul, South Korea, 8-10 October 2008
The year 2015 was designated by the United Nations General Assembly as the Year of Light and Light-based Technologies, and also marks the anniversaries of a number of significant historical events related to light. In 1015, Ibn Al-Haytham published his book of optics; in 1815, Fresnel first proposed the notion that light is actually a wave; James Clerk Maxwell then firmly established this concept with his electromagnetic theory of light propagation; and Einstein announced his discovery of the photoelectric effect, demonstrating that light is made of photons in 1905, followed in 1915 by his general theory of relativity, in which light plays a central role. This book presents lectures from the...
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.