You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive coverage of the basic principles of structural biology, as well as an up-to-date summary of some main directions of research in the field. The relationship between structure and function is described in detail for soluble proteins, membrane proteins, membranes, and nucleic acids.There are several books covering protein structure and function, but none that give a complete picture, including nucleic acids, lipids, membranes and carbohydrates, all being of central importance in structural biology.The book covers state-of-the-art research in various areas. It is unique for its breadth of coverage by experts in the fields. The book is richly illustrated with more than 400 color figures to highlight the wide range of structures.
Based on a symposium held November 1988, in King of Prussia, Penn. Among the topics: structural analysis of proteins, protein folding and stability, receptor design and regulation, guanine nucleotide binding protein family, modeling and structure prediction in macromolecules, protein engineering and
The "Gold Standard" in Biochemistry text books, Biochemistry 4e, is a modern classic that has been thoroughly revised. Don and Judy Voet explain biochemical concepts while offering a unified presentation of life and its variation through evolution. Incorporates both classical and current research to illustrate the historical source of much of our biochemical knowledge.
The GTPase switch appears to be almost as old as life itself, and nature has adapted it to a variety of purposes. This two-volume work surveys the major classes of GTPases, including their role in ensuring accuracy during protein translation, a new look at the trimeric G-protein cycle, the molecular function of ARF in vesicle coating, the emerging role of the dynamin family in vesicle transfer, GTPases which activate GTPases during nascent protein translocation, and the many roles of ras-related proteins in growth, cytoskeletal polymerization, and vesicle transfer. 80 chapters contain much previously unpublished data and, at the rate the extended family of GTPases is growing, it is unlikely that it will again sit for a group portrait such as this. Thus, this could well become the standard reference work.
This book describes the accomplishments of a curious and imaginative scientist, and his endeavours to translate or even to extrapolate scientific insights into the world of art.The science section in this volume concerns studies on S-layers, a very important class of proteins found on the surface of numerous Bacteria and nearly all Archaea. S-layer proteins are one of the most abundant biopolymers on our planet, and assemble into the simplest type of biological membrane. Moreover, they are unique building blocks and patterning elements for the production of complex supramolecular structures and nanoscale devices in nanobiotechnology, molecular nanotechnology, synthetic biology, biomimetics a...
Praise for the Series:"Full of interest not only for the molecular biologist - for whom the numerous references will be invaluable - but will also appeal to a much wider circle of biologists, and in fact to all those who are concerned with the living cell."--British Medical Journal - Provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology - Contributions from leaders in their fields - Abundant references
This book contains the papers that were presented at the "Crystallo graphic and Modeling Methods in Molecular Design Symposium" in Gulf Shores, Alabama, April 30 to May 3, 1989. During the past few years, there has been a burst of activity in this area, especially related to drug design and protein engineering projects. The purpose of the symposium and this book is to provide an up-to date review of the most recent experimental and theoretical approaches that are being used for molecular design. The book covers several re cent examples of approaches for using crystallography in conjunction with forefront modeling methods for guiding the development of en zyme inhibitors and of peptides and p...
This unique volume reviews the beautiful architectures and varying mechanical actions of the set of specialized cellular proteins called molecular chaperones, which provide essential kinetic assistance to processes of protein folding and unfolding in the cell. Ranging from multisubunit ring-shaped chaperonin and Hsp100 machines that use their central cavities to bind and compartmentalize action on proteins, to machines that use other topologies of recognition — binding cellular proteins in an archway or at the surface of a 'clamp' or at the surface of a globular assembly — the structures show us the ways and means the cell has devised to assist its major effectors, proteins, to reach and maintain their unique active forms, as well as, when required, to disrupt protein structure in order to remodel or degrade. Each type of chaperone is beautifully illustrated by X-ray and EM structure determinations at near- atomic level resolution and described by a leader in the study of the respective family. The beauty of what Mother Nature has devised to accomplish essential assisting actions for proteins in vivo is fully appreciable.
Proteins: A Structural Biology Perspective explains how advances in modern physics fueled the birth of structural biology and modern molecular biology in the early to mid 20th century. Scientifically rigorous and deeply informed by the author's own 60-year career as a structural biologist, the book provides historical and personal accounts of how two generations of renowned scientists doggedly pursued their research projects to arrive at milestone achievements, while also covering basic aspects of protein structures and their evolution with a special focus on molecules at the surface of cells and viruses. Since 1962, when only a single structure for myoglobin had been determined at atomic re...