You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. Thi...
Nonlinear Systems covers a wide range of topics in nonlinear science, from general nonlinear dynamics, soliton systems, and the solution of nonlinear differential and difference equations to the integrability of discrete nonlinear systems, and classical and quantum chaos. Its chapters reflect the current status of important nonlinear theories in various areas of applied mathematics and mathematical physics and collectively provide a comprehensive picture of new areas and their applications.
A good deal of the material presented in this book has been prepared by top experts in the field lecturing in January 1987 at the Winter School on Solitons in Tiruchirapalli,India. The lectures begin at an elementary level but go on to include even the most recent developments in the field. The book makes a handy introduction to the various facets of the soliton concept, and will be useful both to newcomers to the field and to researchers who are interested in developments in new branches of physics and mathematics.
In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.
Dynamics of billiard balls and their role in physics have received wide attention. Billiards can nowadays be created as quantum dots in the microscopic world enabling one to envisage the so-called quantum chaos, (i.e.: quantum manifestation of chaos of billiard balls). In fact, owing to recent progress in advanced technology, nanoscale quantum dots, such as chaotic stadium and antidot lattices analogous to the Sinai Billiard, can be fabricated at the interface of semiconductor heterojunctions. This book begins ite exploration of the effect of chaotic electron dynamics on ballistic quantum transport in quantum dots with a puzzling experiment on resistance fluctuations for stadium and circle d...
This book systematically presents the consolidated findings of the phenomenon of self-organization observed during the onset of thermoacoustic instability using approaches from dynamical systems and complex systems theory. Over the last decade, several complex dynamical states beyond limit cycle oscillations such as quasiperiodicity, frequency-locking, period-n, chaos, strange non-chaos, and intermittency have been discovered in thermoacoustic systems operated in laminar and turbulent flow regimes. During the onset of thermoacoustic instability in turbulent systems, an ordered acoustic field and large coherent vortices emerge from the background of turbulent combustion. This emergence of ord...