You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.
Cell phones . . . airbags . . . genetically modified food . . . the Internet. These are all emblems of modern life. You might ask what we would do without them. But an even more interesting question might be what would we do if we had to actually explain how they worked? The United States is riding a whirlwind of technological change. To be sure, there have been periods, such as the late 1800s, when new inventions appeared in society at a comparable rate. But the pace of change today, and its social, economic, and other impacts, are as significant and far reaching as at any other time in history. And it seems that the faster we embrace new technologies, the less we're able to understand them...
Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in educationâ€"now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€"have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€"including education researchâ€"develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.
Integrated computational materials engineering (ICME) is an emerging discipline that can accelerate materials development and unify design and manufacturing. Developing ICME is a grand challenge that could provide significant economic benefit. To help develop a strategy for development of this new technology area, DOE and DoD asked the NRC to explore its benefits and promises, including the benefits of a comprehensive ICME capability; to establish a strategy for development and maintenance of an ICME infrastructure, and to make recommendations about how best to meet these opportunities. This book provides a vision for ICME, a review of case studies and lessons learned, an analysis of technological barriers, and an evaluation of ways to overcome cultural and organizational challenges to develop the discipline.
This guide offers helpful advice on how teachers, administrators, and career advisers in science and engineering can become better mentors to their students. It starts with the premise that a successful mentor guides students in a variety of ways: by helping them get the most from their educational experience, by introducing them to and making them comfortable with a specific disciplinary culture, and by offering assistance with the search for suitable employment. Other topics covered in the guide include career planning, time management, writing development, and responsible scientific conduct. Also included is a valuable list of bibliographical and Internet resources on mentoring and related topics.
In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. Expanding Underrepresented Minority Participation explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making minority participation in STEM education at all levels a na...
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
The United States economy relies on the productivity, entrepreneurship, and creativity of its people. To maintain its scientific and engineering leadership amid increasing economic and educational globalization, the United States must aggressively pursue the innovative capacity of all its people—women and men. However, women face barriers to success in every field of science and engineering; obstacles that deprive the country of an important source of talent. Without a transformation of academic institutions to tackle such barriers, the future vitality of the U.S. research base and economy are in jeopardy. Beyond Bias and Barriers explains that eliminating gender bias in academia requires immediate overarching reform, including decisive action by university administrators, professional societies, federal funding agencies and foundations, government agencies, and Congress. If implemented and coordinated across public, private, and government sectors, the recommended actions will help to improve workplace environments for all employees while strengthening the foundations of America's competitiveness.
In recent years there have been increasing efforts to use accountability systems based on large-scale tests of students as a mechanism for improving student achievement. The federal No Child Left Behind Act (NCLB) is a prominent example of such an effort, but it is only the continuation of a steady trend toward greater test-based accountability in education that has been going on for decades. Over time, such accountability systems included ever-stronger incentives to motivate school administrators, teachers, and students to perform better. Incentives and Test-Based Accountability in Education reviews and synthesizes relevant research from economics, psychology, education, and related fields ...