Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Statistical Mechanics of Classical and Disordered Systems
  • Language: en
  • Pages: 281

Statistical Mechanics of Classical and Disordered Systems

These proceedings of the conference Advances in Statistical Mechanics, held in Marseille, France, August 2018, focus on fundamental issues of equilibrium and non-equilibrium dynamics for classical mechanical systems, as well as on open problems in statistical mechanics related to probability, mathematical physics, computer science, and biology. Statistical mechanics, as envisioned more than a century ago by Boltzmann, Maxwell and Gibbs, has recently undergone stunning twists and developments which have turned this old discipline into one of the most active areas of truly interdisciplinary and cutting-edge research. The contributions to this volume, with their rather unique blend of rigorous mathematics and applications, outline the state-of-the-art of this success story in key subject areas of equilibrium and non-equilibrium classical and quantum statistical mechanics of both disordered and non-disordered systems. Aimed at researchers in the broad field of applied modern probability theory, this book, and in particular the review articles, will also be of interest to graduate students looking for a gentle introduction to active topics of current research.

Correlated Random Systems: Five Different Methods
  • Language: en
  • Pages: 213

Correlated Random Systems: Five Different Methods

  • Type: Book
  • -
  • Published: 2015-06-09
  • -
  • Publisher: Springer

This volume presents five different methods recently developed to tackle the large scale behavior of highly correlated random systems, such as spin glasses, random polymers, local times and loop soups and random matrices. These methods, presented in a series of lectures delivered within the Jean-Morlet initiative (Spring 2013), play a fundamental role in the current development of probability theory and statistical mechanics. The lectures were: Random Polymers by E. Bolthausen, Spontaneous Replica Symmetry Breaking and Interpolation Methods by F. Guerra, Derrida's Random Energy Models by N. Kistler, Isomorphism Theorems by J. Rosen and Spectral Properties of Wigner Matrices by B. Schlein. This book is the first in a co-edition between the Jean-Morlet Chair at CIRM and the Springer Lecture Notes in Mathematics which aims to collect together courses and lectures on cutting-edge subjects given during the term of the Jean-Morlet Chair, as well as new material produced in its wake. It is targeted at researchers, in particular PhD students and postdocs, working in probability theory and statistical physics.

Probability in Complex Physical Systems
  • Language: en
  • Pages: 518

Probability in Complex Physical Systems

Probabilistic approaches have played a prominent role in the study of complex physical systems for more than thirty years. This volume collects twenty articles on various topics in this field, including self-interacting random walks and polymer models in random and non-random environments, branching processes, Parisi formulas and metastability in spin glasses, and hydrodynamic limits for gradient Gibbs models. The majority of these articles contain original results at the forefront of contemporary research; some of them include review aspects and summarize the state-of-the-art on topical issues – one focal point is the parabolic Anderson model, which is considered with various novel aspects including moving catalysts, acceleration and deceleration and fron propagation, for both time-dependent and time-independent potentials. The authors are among the world’s leading experts. This Festschrift honours two eminent researchers, Erwin Bolthausen and Jürgen Gärtner, whose scientific work has profoundly influenced the field and all of the present contributions.

Gaussian Processes on Trees
  • Language: en
  • Pages: 211

Gaussian Processes on Trees

This book presents recent advances in branching Brownian motion from the perspective of extreme value theory and statistical physics, for graduates.

Spin Glasses: Statics and Dynamics
  • Language: en
  • Pages: 281

Spin Glasses: Statics and Dynamics

Over the last decade, spin glass theory has turned from a fascinating part of t- oretical physics to a ?ourishing and rapidly growing subject of probability theory as well. These developments have been triggered to a large part by the mathem- ical understanding gained on the fascinating and previously mysterious “Parisi solution” of the Sherrington–Kirkpatrick mean ?eld model of spin glasses, due to the work of Guerra, Talagrand, and others. At the same time, new aspects and applications of the methods developed there have come up. The presentvolumecollects a number of reviewsaswellas shorterarticlesby lecturers at a summer school on spin glasses that was held in July 2007 in Paris. Th...

Random Walks, Random Fields, and Disordered Systems
  • Language: en
  • Pages: 254

Random Walks, Random Fields, and Disordered Systems

  • Type: Book
  • -
  • Published: 2015-09-21
  • -
  • Publisher: Springer

Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures...

Probability and Statistical Physics in St. Petersburg
  • Language: en
  • Pages: 482

Probability and Statistical Physics in St. Petersburg

This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.

Advances in Disordered Systems, Random Processes and Some Applications
  • Language: en
  • Pages: 383

Advances in Disordered Systems, Random Processes and Some Applications

This book offers a unified perspective on the study of complex systems with contributions written by leading scientists from various disciplines, including mathematics, physics, computer science, biology, economics and social science. It is written for researchers from a broad range of scientific fields with an interest in recent developments in complex systems.

Markov Processes and Related Fields
  • Language: en
  • Pages: 632

Markov Processes and Related Fields

  • Type: Book
  • -
  • Published: 2008
  • -
  • Publisher: Unknown

None

The Sherrington-Kirkpatrick Model
  • Language: en
  • Pages: 164

The Sherrington-Kirkpatrick Model

The celebrated Parisi solution of the Sherrington-Kirkpatrick model for spin glasses is one of the most important achievements in the field of disordered systems. Over the last three decades, through the efforts of theoretical physicists and mathematicians, the essential aspects of the Parisi solution were clarified and proved mathematically. The core ideas of the theory that emerged are the subject of this book, including the recent solution of the Parisi ultrametricity conjecture and a conceptually simple proof of the Parisi formula for the free energy. The treatment is self-contained and should be accessible to graduate students with a background in probability theory, with no prior knowledge of spin glasses. The methods involved in the analysis of the Sherrington-Kirkpatrick model also serve as a good illustration of such classical topics in probability as the Gaussian interpolation and concentration of measure, Poisson processes, and representation results for exchangeable arrays.