You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These proceedings of the conference Advances in Statistical Mechanics, held in Marseille, France, August 2018, focus on fundamental issues of equilibrium and non-equilibrium dynamics for classical mechanical systems, as well as on open problems in statistical mechanics related to probability, mathematical physics, computer science, and biology. Statistical mechanics, as envisioned more than a century ago by Boltzmann, Maxwell and Gibbs, has recently undergone stunning twists and developments which have turned this old discipline into one of the most active areas of truly interdisciplinary and cutting-edge research. The contributions to this volume, with their rather unique blend of rigorous mathematics and applications, outline the state-of-the-art of this success story in key subject areas of equilibrium and non-equilibrium classical and quantum statistical mechanics of both disordered and non-disordered systems. Aimed at researchers in the broad field of applied modern probability theory, this book, and in particular the review articles, will also be of interest to graduate students looking for a gentle introduction to active topics of current research.
This volume presents five different methods recently developed to tackle the large scale behavior of highly correlated random systems, such as spin glasses, random polymers, local times and loop soups and random matrices. These methods, presented in a series of lectures delivered within the Jean-Morlet initiative (Spring 2013), play a fundamental role in the current development of probability theory and statistical mechanics. The lectures were: Random Polymers by E. Bolthausen, Spontaneous Replica Symmetry Breaking and Interpolation Methods by F. Guerra, Derrida's Random Energy Models by N. Kistler, Isomorphism Theorems by J. Rosen and Spectral Properties of Wigner Matrices by B. Schlein. This book is the first in a co-edition between the Jean-Morlet Chair at CIRM and the Springer Lecture Notes in Mathematics which aims to collect together courses and lectures on cutting-edge subjects given during the term of the Jean-Morlet Chair, as well as new material produced in its wake. It is targeted at researchers, in particular PhD students and postdocs, working in probability theory and statistical physics.
This book contains the lectures given at the NATO Advanced Study Institute on `Cellular Automata and Cooperative Systems', held at Les Houches, France, from June 22 to July 2, 1992. The book contains contributions by mathematical and theoretical physicists and mathematicians working in the field of local interacting systems, cellular probabilistic automata, statistical physics, and complexity theory, as well as the applications of these fields.
Practical Atlas of Ruminant and Camelid Reproductive Ultrasonography is a practical, fully referenced, image-based guide to the essential concepts of reproductive ultrasound in domesticated ruminants and camelids. Providing information to enable practitioners to incorporate ultrasound service into their practices, the book also includes more specialized information for advanced techniques such as fetal sexing, embryo transfer, color Doppler, and others. Practical Atlas of Ruminant and Camelid Reproductive Ultrasonography is a must-have reference for ruminant and camelid practitioners, instructors, and students.
This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.
About sixty years ago, the anomalous magnetic response of certain magnetic alloys drew the attention of theoretical physicists. It soon became clear that understanding these systems, now called spin glasses, would give rise to a new branch of statistical physics. As physical materials, spin glasses were found to be as useless as they were exotic. They have nevertheless been recognized as paradigmatic examples of complex systems with applications to problems as diverse as neural networks, amorphous solids, biological molecules, social and economic interactions, information theory and constraint satisfaction problems.This book presents an encyclopaedic overview of the broad range of these applications. More than 30 contributions are compiled, written by many of the leading researchers who have contributed to these developments over the last few decades. Some timely and cutting-edge applications are also discussed. This collection serves well as an introduction and summary of disordered and glassy systems for advanced undergraduates, graduate students and practitioners interested in the topic.
Unlock the path to conception with The Ultimate Fertility Guidebook Dealing with infertility can be an immensely stressful experience, but fear not - this no-nonsense holistic approach empowers readers to take charge of their fertility journey naturally. Driven by the wisdom of natural medicine, this comprehensive guide illuminates how lifestyle factors, such as nutrition, exercise, clean living, and emotional balance, can either hinder or pave the way to conception. Authored by the esteemed Dr. Christina Burns, a leading Integrative Fertility Specialist in NYC who triumphed over her own fertility challenges through holistic medicine, this guidebook offers an honest and relatable way to have...
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.