You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The French expression “dessins d'enfants” means children's drawings. This term was coined by the great French mathematician Alexandre Grothendieck in order to denominate a method of pictorial representation of some highly interesting classes of polynomials and rational functions. The polynomials studied in this book take their origin in number theory. The authors show how, by drawing simple pictures, one can prove some long-standing conjectures and formulate new ones. The theory presented here touches upon many different fields of mathematics. The major part of the book is quite elementary and is easily accessible to an undergraduate student. The less elementary parts, such as Galois theory or group representations and their characters, would need a more profound knowledge of mathematics. The reader may either take the basic facts of these theories for granted or use our book as a motivation and a first approach to these subjects.
This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
The connective topological modular forms spectrum, tmf, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of tmf and several tmf-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degr...
This book provides an introduction to the inverse eigenvalue problem for graphs (IEP-$G$) and the related area of zero forcing, propagation, and throttling. The IEP-$G$ grew from the intersection of linear algebra and combinatorics and has given rise to both a rich set of deep problems in that area as well as a breadth of “ancillary” problems in related areas. The IEP-$G$ asks a fundamental mathematical question expressed in terms of linear algebra and graph theory, but the significance of such questions goes beyond these two areas, as particular instances of the IEP-$G$ also appear as major research problems in other fields of mathematics, sciences and engineering. One approach to the IEP-$G$ is through rank minimization, a relevant problem in itself and with a large number of applications. During the past 10 years, important developments on the rank minimization problem, particularly in relation to zero forcing, have led to significant advances in the IEP-$G$. The monograph serves as an entry point and valuable resource that will stimulate future developments in this active and mathematically diverse research area.
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to...
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation of this book is an update of the classical theory for class groups taking into account the changed point of view on Iwasawa theory. The goal of this first part of the two-part publication is to explain the theory of ideal class groups, including its algebraic aspect (the Iwasawa class number formula), its analytic aspect (Leopoldt–Kubota $L$-functions), and the Iwasawa main conjecture, which is a bridge between the algebraic and the analytic aspects. The second part of the book will be published as a separate volume in the same series, Mathematical Surveys and Monographs of the American Mathematical Society.
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov...
It is well known that if two independent identically distributed random variables are Gaussian, then their sum and difference are also independent. It turns out that only Gaussian random variables have such property. This statement, known as the famous Kac-Bernstein theorem, is a typical example of a so-called characterization theorem. Characterization theorems in mathematical statistics are statements in which the description of possible distributions of random variables follows from properties of some functions of these random variables. The first results in this area are associated with famous 20th century mathematicians such as G. Pólya, M. Kac, S. N. Bernstein, and Yu. V. Linnik. By no...
Recent years have witnessed a growth of interest in the special functions called ridge functions. These functions appear in various fields and under various guises. They appear in partial differential equations (where they are called plane waves), in computerized tomography, and in statistics. Ridge functions are also the underpinnings of many central models in neural network theory. In this book various approximation theoretic properties of ridge functions are described. This book also describes properties of generalized ridge functions, and their relation to linear superpositions and Kolmogorov's famous superposition theorem. In the final part of the book, a single and two hidden layer neu...
The goal of this book is to present a portrait of the n n-dimensional Cremona group with an emphasis on the 2-dimensional case. After recalling some crucial tools, the book describes a naturally defined infinite dimensional hyperbolic space on which the Cremona group acts. This space plays a fundamental role in the study of Cremona groups, as it allows one to apply tools from geometric group theory to explore properties of the subgroups of the Cremona group as well as the degree growth and dynamical behavior of birational transformations. The book describes natural topologies on the Cremona group, codifies the notion of algebraic subgroups of the Cremona groups and finishes with a chapter on the dynamics of their actions. This book is aimed at graduate students and researchers in algebraic geometry who are interested in birational geometry and its interactions with geometric group theory and dynamical systems.