You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nuclear Magnetic Resonance Spectroscopy, Second Edition focuses on two-dimensional nuclear magnetic resonance (NMR) spectroscopy, high resolution NMR of solids, water suppression, multiple quantum spectroscopy, and NMR imaging. The selection first takes a look at the fundamental principles and experimental methods. Discussions focus on the NMR phenomenon, dipolar broadening and spin-spin relaxation, nuclear electric quadrupole relaxation, saturation, magnetic shielding and chemical shift, magnetic field, transitions between the nuclear energy levels, and resolution and sensitivity considerations. The manuscript then ponders on chemical shift, coupling of nuclear spins, and nuclear relaxation...
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids...
Nuclear Magnetic Resonance offers an accessible introduction to the physical principles of liquid-state NMR, with examples, applications, and exercises provided throughout to enable beginning undergraduates to get to grips with this important analytical technique.
This new edition has been thoroughly revised to bring the handbook up-to-date.
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation t...
Although nuclear magnetic resonance is perhaps best known for its spectacular utility in medical tomography, its potential applicability to fields such as biology, materials science, and chemical physics is being increasingly recognized as laboratory NMR spectrometers are adapted to enable small scale imaging. This excellent introduction to the subject explores principles and common themes underlying two key variants of NMR microscopy, and provides many examples of their use. Methods discussed are not only important to fundamental biological and physical research, but have applications to a wide variety of industries, including those concerned with petrochemicals, polymers, biotechnology, food processing, and natural product processing. The wide range of scientists interested in NMR microscopy will want to own a copy of this book.
Spin Dynamics: Basics of Nuclear Magnetic Resonance, Second Edition is a comprehensive and modern introduction which focuses on those essential principles and concepts needed for a thorough understanding of the subject, rather than the practical aspects. The quantum theory of nuclear magnets is presented within a strong physical framework, supported by figures. The book assumes only a basic knowledge of complex numbers and matrices, and provides the reader with numerous worked examples and exercises to encourage understanding. With the explicit aim of carefully developing the subject from the beginning, the text starts with coverage of quarks and nucleons and progresses through to a detailed...
Emphasizes the physical and mathematical features of liquid state NMR spectroscopy which underpin the numerous important applications of the technique. Details of some of these applications, such as structural determination from small organic molecules to large biomolecules, the study of molecular motions and NMR imaging then follow. Detailed examples and figures throughout the text enable the student to grasp conceptually challenging ideas, while the most advanced mathematical and quantum concepts are presented so that they can be skipped on a first reading without impeding a global understanding of the key concepts.
Describes the use of NMR for structural and mechanistic studies in organic and inorganic chemistry and biochemistry. Theory is presented in semi-empirical fashion, and only a minimal mathematical approach applied. Describes the original NMR experiment done using the low resolution technique and advances to the modern Fourier transform technique. In addition to chemical shifts, coupling constants, and double resonance, this book covers magic angle and treats inorganic and biological systems. Presentations include appropriate examples and problems.
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.