You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The authors explain in this work a new approach to observing and controlling linear systems whose inputs and outputs are not fixed in advance. They cover a class of linear time-invariant state/signal system that is general enough to include most of the standard classes of linear time-invariant dynamical systems, but simple enough that it is easy to understand the fundamental principles. They begin by explaining the basic theory of finite-dimensional and bounded systems in a way suitable for graduate courses in systems theory and control. They then proceed to the more advanced infinite-dimensional setting, opening up new ways for researchers to study distributed parameter systems, including linear port-Hamiltonian systems and boundary triplets. They include the general non-passive part of the theory in continuous and discrete time, and provide a short introduction to the passive situation. Numerous examples from circuit theory are used to illustrate the theory.
This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in particular, to systems theory.
System and Control theory is one of the most exciting areas of contemporary engineering mathematics. From the analysis of Watt's steam engine governor - which enabled the Industrial Revolution - to the design of controllers for consumer items, chemical plants and modern aircraft, the area has always drawn from a broad range of tools. It has provided many challenges and possibilities for interaction between engineering and established areas of 'pure' and 'applied' mathematics. This impressive volume collects a discussion of more than fifty open problems which touch upon a variety of subfields, including: chaotic observers, nonlinear local controlability, discrete event and hybrid systems, neural network learning, matrix inequalities, Lyapunov exponents, and many other issues. Proposed and explained by leading researchers, they are offered with the intention of generating further work, as well as inspiration for many other similar problems which may naturally arise from them. With extensive references, this book will be a useful reference source - as well as an excellent addendum to the textbooks in the area.
This book is devoted to some topical problems and applications of operator theory and its interplay with modern complex analysis. It consists of 20 selected survey papers that represent updated (mainly plenary) addresses to the IWOTA 2000 conference held at Bordeaux from June 13 to 16, 2000. The main subjects of the volume include: - spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers; - multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations; - Hankel operators and forms; - operator algebras; - the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations; - approximation in holomorphic spaces. These subjects are unified by the common "operator theoretic approach" and the systematic use of modern function theory techniques.
This volume comprises selected papers presented at the Volterra Centennial Symposium and is dedicated to Volterra and the contribution of his work to the study of systems - an important concept in modern engineering. Vito Volterra began his study of integral equations at the end of the nineteenth century and this was a significant development in the theory of integral equations and nonlinear functional analysis. Volterra series are of interest and use in pure and applied mathematics and engineering.
Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.
This volume contains contributions originating from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Newcastle upon Tyne in July 2004. The articles expertly cover a broad range of material at the cutting edge of functional analysis and its applications. The works are written by world authorities in their specialities.
The state space method developed in the last decades allows us to study the theory of linear systems by using tools from the theory of linear operators; conversely, it had a strong influence on operator theory introducing new questions and topics. The present volume contains a collection of essays representing some of the recent advances in the state space method. Methods covered include noncommutative systems theory, new aspects of the theory of discrete systems, discrete analogs of canonical systems, and new applications to the theory of Bezoutiants and convolution equations. The articles in the volume will be of interest to pure and applied mathematicians, electrical engineers and theoretical physicists.
This book contains twenty four papers, presented at the conference on Volterra and Functional Differential Equations held in Virginia in 1981, on various topics, including Liapunov stability, Volterra equations, integral equations, and functional differential equations.
For more than three decades, Anders Lindquist has delivered fundamental cont- butions to the ?elds of systems, signals and control. Throughout this period, four themes can perhaps characterize his interests: Modeling, estimation and ?ltering, feedback and robust control. His contributions to modeling include seminal work on the role of splitting subspaces in stochastic realization theory, on the partial realization problem for both deterministic and stochastic systems, on the solution of the rational covariance extension problem and on system identi?cation. His contributions to ?ltering and estimation include the development of fast ?ltering algorithms, leading to a nonlinear dynamical syste...