You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Research progress in soil–root growth interactions has been slow due to the relative inaccessibility of roots in their natural environment and because root research cuts across the boundaries of soil science, ecology, crop science, and plant physiology, among others. Enhancing Understanding and Quantification of Soil–Root Growth Interactions takes on this challenge to solve society's growing problems in the conservation of quality water and soil resources. Researchers must come together and leverage our understanding of the rhizosphere to maximize efficient, sustainable use of limited water and soil nutrient resources. This is a serious calling—from addressing the critical needs in nations who cannot afford costly fertilizers, to the global challenge of enhancing soil carbon storage to reduce climate change effects of elevated carbon dioxide. This book brings together scientists from different disciplines, worldwide, together to encourage synthesis of transdisciplinary knowledge and further research and developments in the area of root–soil interactions.
Water stress and heat stress are considered to be two primary factors that limit crop production in many parts of the world. Global warming appears to be increasing the water requirements of plants. Understanding the impact of water deficit on plant physiological processes and efficient water management are of great concern in maintaining food production to meet ever increasing world food demand. The book addresses various climatic soil and plant factors that contribute to the water use efficiency in plants subjected to water stress. It covers all issues related to soil, plant and climatic factors that contribute to the crop responses to water stress. The books advances the knowledge in improving and sustaining crop yields in ever increasing unpredictable climatic fluctuations This book uses crop simulation models for response of crops to limited water under various management and climatic conditions.
Designed for undergraduate and graduate students interested in learning basic soil physics and its application to environment, soil health, water quality and productivity, this book provides readers with a clear coverage of the basic principles of water and solute transport through vadose zone, the theory behind transport and step-by-step guidance on how to use current computer models in the public domain along with soil erosion and contaminant remediation. Students will develop a deeper understanding of the fundamental processes within the soil profile that control water infiltration, redistribution, evapotranspiration, drainage, and erosion. The updated second edition features one new chap...
Compiled by teams of leading authorities this Specialist Periodical Report on Photochemistry aims to provide an annual review of photo-induced processes.
A clear understanding of the current water balance is required to explore options for water saving measures. However, measurement of all the terms in the water balance is infeasible in terms of spatial and temporal scale, but hydrological simulation models can fill the gap between measured and required data. For a basin in Western Turkey, simulation modeling at three different scales, field, irrigation scheme and basin scale, was performed to obtain all terms of the water balance. These water balance numbers were used to calculate the Productivity of Water at the three spatial levels distinguished to assess the performance of the systems.
Irrigated agriculture and the use of water resources in agriculture face the challenges of sustainable development. Research has advanced our knowledge of water use by crops, soil-water-solutes interactions, and the engineering and managerial tools needed to mobilize, convey, distribute, control and apply water for agricultural production. However, the achievements booked in user practice have revealed the need for new developments in the areas of resource conservation, control of environmental and health impacts, modernisation of technologies and management, economic viability and the social acceptance of changes. The contributions to Sustainability of Irrigated Agriculture cover most of th...
This book describes the physiological and anatomical principles and the chemical and physical factors that determine uptake, translocation, accumulation, loss, and metabolism of anthropogenic chemicals in plants. Expert authors in the fields of biology, chemistry, ecology, environmental physics, and biochemistry provide recently developed methods and models for estimation of the behavior of environmental chemicals in the soil-plant-air system-information that is essential in the hazard assessment of new and existing chemicals.
This book has been compiled as a result of collaboration within the International Energy Agency Bioenergy Agreement. The aim of the book is to review the state of the art with respect to research and practical implications in order to aid the development of the technology for short rotation forestry production.
None
This book provides valuable lessons that will improve public policy and the quality of decisions that will affect generations to come. Richard Moss, Senior Director Climate and Energy, United Nations Foundation An excellent addition to the body of knowledge on adaptation to climate change from the developing world, which has been largely missing until now. Saleemul Huq, Director, Climate Change Programme, International Institute for Environment and Development This important volume is a valuable effort on adaptation to climate change that needs to be on the desks of those seeking coping strategies for longer term responses to evolving climate changes. Roger Kasperson, Emeritus, Clark Univers...