Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Assessment of Inertial Confinement Fusion Targets
  • Language: en
  • Pages: 119

Assessment of Inertial Confinement Fusion Targets

In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, parti...

Assessment of Inertial Confinement Fusion Targets
  • Language: en
  • Pages: 119

Assessment of Inertial Confinement Fusion Targets

In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, parti...

An Assessment of the Prospects for Inertial Fusion Energy
  • Language: en
  • Pages: 247

An Assessment of the Prospects for Inertial Fusion Energy

The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Interim Reportâ¬
  • Language: en
  • Pages: 59

Interim Reportâ¬"Status of the Study "An Assessment of the Prospects for Inertial Fusion Energy"

The scientific and technological progress in inertial confinement fusion has been substantial during the past decade. However, many of the technologies needed for an integrated inertial fusion energy system are still at an early stage of technological maturity. For all approaches to inertial fusion energy there remain critical scientific and engineering challenges. In this interim report of the study An Assessment of the Prospects for Inertial Fusion Energy, the Committee on the Prospects for Inertial Confinement Fusion Energy Systems outlines their preliminary conclusions and recommendations of the feasibility of inertial fusion energy. The committee also describes its anticipated next steps as it prepares its final report.

An Assessment of the Prospects for Inertial Fusion Energy
  • Language: en
  • Pages: 247

An Assessment of the Prospects for Inertial Fusion Energy

The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Inertial Confinement Fusion Driven Thermonuclear Energy
  • Language: en
  • Pages: 324

Inertial Confinement Fusion Driven Thermonuclear Energy

  • Type: Book
  • -
  • Published: 2017-01-26
  • -
  • Publisher: Springer

This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required.

Magnetic Fusion Technology
  • Language: en
  • Pages: 816

Magnetic Fusion Technology

Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Lessons Learned in Decadal Planning in Space Science
  • Language: en
  • Pages: 191

Lessons Learned in Decadal Planning in Space Science

The National Research Council (NRC) has been conducting decadal surveys in the Earth and space sciences since 1964, and released the latest five surveys in the past 5 years, four of which were only completed in the past 3 years. Lessons Learned in Decadal Planning in Space Science is the summary of a workshop held in response to unforseen challenges that arose in the implementation of the recommendations of the decadal surveys. This report takes a closer look at the decadal survey process and how to improve this essential tool for strategic planning in the Earth and space sciences. Workshop moderators, panelists, and participants lifted up the hood on the decadal survey process and scrutinized every element of the decadal surveys to determine what lessons can be gleaned from recent experiences and applied to the design and execution of future decadal surveys.

Frontiers in High Energy Density Physics
  • Language: en
  • Pages: 177

Frontiers in High Energy Density Physics

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Plasma Science
  • Language: en
  • Pages: 231

Plasma Science

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.