You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
One of the great unsolved problems of science and also of physics is the prediction of the three dimensional structure of a protein from its amino acid sequence. It may be stated that the deep connection existing between physics and protein folding is not so much, or in any case not only, through physical methods, but through physical concepts.
This book is the culmination of three years of research effort on a multidisciplinary project in which physicists, mathematicians, computer scientists and social scientists worked together to arrive at a unifying picture of complex networks. The contributed chapters form a reference for the various problems in data analysis visualization and modeling of complex networks.
This ground-breaking Handbook presents a state-of-the-art exploration of entropy, complexity and spatial dynamics from fundamental theoretical, empirical and methodological perspectives. It considers how foundational theories can contribute to new advances, including novel modeling and empirical insights at different sectoral, spatial and temporal scales.
Type I chaperonins are key players in maintaining the proteome of bacteria and organelles of bacterial origin. They are well known for their crucial role in mediating protein folding. For almost three decades, the molecular mechanism of chaperonin function has been the subject of intensive research. Still, surprising new mechanistic discoveries are constantly reported. It seems that we are far from having a full understanding of the chaperonin mode of action. Chaperonins are not simply protein folding machines. They also perform diverse extramitochondrial tasks, mainly related to inflammatory and signal transduction processes. This eBook constitutes ten articles highlighting the latest developments related to the divers functions of Type I chaperonins. As its title, mechanism and beyond, the collection starts with mechanistic view, continues with extracellular functions and ends with biotechnological applications of Type I chaperonins.
Key introductory text for graduate students and researchers in physics, biology and biochemistry.
This book constitutes the refereed proceedings of the 7th International Conference on Cellular Automata for Research and Industry, ACRI 2006. The book presents 53 revised full papers and 19 revised poster papers together with 6 invited lectures. Topical sections include CA theory and implementation, computational theory, population dynamics, physical modeling, urban, environmental and social modeling, traffic and boolean networks, multi-agents and robotics, as well as crowds and cellular automata, and more.
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.
Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].
Models of biomolecular structure and dynamics are often obtained by combining simulation or prediction approaches (e.g., comparative modeling, Molecular Dynamics (MD) simulations, Normal Mode Analysis (NMA), etc.) with experimental approaches (e.g., Nuclear Magnetic Resonance (NMR), X-ray crystallography, Small-Angle X-ray Scattering (SAXS), Electron Microscopy (EM), etc.). Such hybrid modeling extends the capabilities of experimental techniques, by enriching structural information and facilitating dynamics studies of biomolecules. This eBook contains articles on methodological developments, applications, and challenges of hybrid biomolecular modeling that have been collected in the framework of the Frontiers Research Topic entitled “Hybrid Biomolecular Modeling”.
In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. "Unifying Themes in Complex Systems" is a well established series of carefully edited conference proceedings that serve the purpose of documenting and archiving the progress of cross-fertilization in this field. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex systems and its application for the betterment of society. NECSI hosts the International Conference on Complex Systems and publishes the NECSI Book Series in conjunction with Springer Publishers.