You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Diffeology is an extension of differential geometry. With a minimal set of axioms, diffeology allows us to deal simply but rigorously with objects which do not fall within the usual field of differential geometry: quotients of manifolds (even non-Hausdorff), spaces of functions, groups of diffeomorphisms, etc. The category of diffeology objects is stable under standard set-theoretic operations, such as quotients, products, co-products, subsets, limits, and co-limits. With its right balance between rigor and simplicity, diffeology can be a good framework for many problems that appear in various areas of physics. Actually, the book lays the foundations of the main fields of differential geometry used in theoretical physics: differentiability, Cartan differential calculus, homology and cohomology, diffeological groups, fiber bundles, and connections. The book ends with an open program on symplectic diffeology, a rich field of application of the theory. Many exercises with solutions make this book appropriate for learning the subject.
"This memoir presents a generalization of the moment maps to the category {Diffeology}. This construction applies to every smooth action of any diffeological group G preserving a closed 2-form w, defined on some diffeological space X. In particular, that reveals a universal construction, associated to the action of the whole group of automorphisms Diff (X, w). By considering directly the space of momenta of any diffeological group G, that is the space g* of left-invariant 1-forms on G, this construction avoids any reference to Lie algebra or any notion of vector fields, or does not involve any functional analysis. These constructions of the various moment maps are illustrated by many examples, some of them originals and others suggested by the mathematical literature."--Publisher's description.
The theory of $L$-indistinguishability for inner forms of $SL_2$ has been established in the well-known paper of Labesse and Langlands (L-indistinguishability forSL$(2)$. Canad. J. Math. 31 (1979), no. 4, 726-785). In this memoir, the authors study $L$-indistinguishability for inner forms of $SL_n$ for general $n$. Following the idea of Vogan in (The local Langlands conjecture. Representation theory of groups and algebras, 305-379, Contemp. Math. 145 (1993)), they modify the $S$-group and show that such an $S$-group fits well in the theory of endoscopy for inner forms of $SL_n$.
Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.
The authors give a characterization of the internally $4$-connected binary matroids that have no minor isomorphic to $M(K_{3,3})$. Any such matroid is either cographic, or is isomorphic to a particular single-element extension of the bond matroid of a cubic or quartic Mobius ladder, or is isomorphic to one of eighteen sporadic matroids.
Assume that there is some analytic structure, a differential equation or a stochastic process for example, on a metric space. To describe asymptotic behaviors of analytic objects, the original metric of the space may not be the best one. Every now and then one can construct a better metric which is somehow ``intrinsic'' with respect to the analytic structure and under which asymptotic behaviors of the analytic objects have nice expressions. The problem is when and how one can find such a metric. In this paper, the author considers the above problem in the case of stochastic processes associated with Dirichlet forms derived from resistance forms. The author's main concerns are the following two problems: (I) When and how to find a metric which is suitable for describing asymptotic behaviors of the heat kernels associated with such processes. (II) What kind of requirement for jumps of a process is necessary to ensure good asymptotic behaviors of the heat kernels associated with such processes.
Iwaniec and Onninen (both mathematics, Syracuse U., US) address concrete questions regarding energy minimal deformations of annuli in Rn. One novelty of their approach is that they allow the mappings to slip freely along the boundaries of the domains, where it is most difficult to establish the existence, uniqueness, and invertibility properties of the extremal mappings. At the core of the matter, they say, is the underlying concept of free Lagrangians. After an introduction, they cover in turn principal radial n-harmonics, and the n-harmonic energy. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).
In this graduate-level book, leading researchers explore various new notions of 'space' in mathematics.
"Volume 209, number 985 (fourth of 5 numbers)."
"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational ma...