Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Algebraic Graph Theory
  • Language: en
  • Pages: 453

Algebraic Graph Theory

This book presents and illustrates the main tools and ideas of algebraic graph theory, with a primary emphasis on current rather than classical topics. It is designed to offer self-contained treatment of the topic, with strong emphasis on concrete examples.

Codes, Designs and Geometry
  • Language: en
  • Pages: 114

Codes, Designs and Geometry

Codes, Designs, and Geometry brings together in one place important contributions and up-to-date research results in this important area. Codes, Designs, and Geometry serves as an excellent reference, providing insight into some of the most important research issues in the field.

Surveys in Combinatorics 2005
  • Language: en
  • Pages: 270

Surveys in Combinatorics 2005

This volume provides an up-to-date overview of current research across combinatorics,.

Finite Geometries, Groups, and Computation
  • Language: en
  • Pages: 287

Finite Geometries, Groups, and Computation

This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.

Chevalley Supergroups
  • Language: en
  • Pages: 77

Chevalley Supergroups

In the framework of algebraic supergeometry, the authors give a construction of the scheme-theoretic supergeometric analogue of split reductive algebraic group-schemes, namely affine algebraic supergroups associated to simple Lie superalgebras of classical type. In particular, all Lie superalgebras of both basic and strange types are considered. This provides a unified approach to most of the algebraic supergroups considered so far in the literature, and an effective method to construct new ones. The authors' method follows the pattern of a suitable scheme-theoretic revisitation of Chevalley's construction of semisimple algebraic groups, adapted to the reductive case. As an intermediate step, they prove an existence theorem for Chevalley bases of simple classical Lie superalgebras and a PBW-like theorem for their associated Kostant superalgebras.

Computer Music Modeling and Retrieval
  • Language: en
  • Pages: 381

Computer Music Modeling and Retrieval

  • Type: Book
  • -
  • Published: 2005-02-02
  • -
  • Publisher: Springer

This book constitutes the thoroughly refereed post-proceedings of the International Computer Music Modeling and Retrieval Symposium, CMMR 2004, held in Esbjerg, Denmark in May 2004. The 26 revised full papers presented were carefully selected during two rounds of reviewing and improvement. Due to the interdisciplinary nature of the area, the papers address a broad variety of topics. The papers are organized in topical sections on pitch and melody detection; rhythm, tempo, and beat; music generation and knowledge; music performance, rendering, and interfaces; music scores and synchronization; synthesis, timbre, and musical playing; music representation and retrieval; and music analysis.

Taking Sudoku Seriously
  • Language: en
  • Pages: 227

Taking Sudoku Seriously

Packed with more than a hundred color illustrations and a wide variety of puzzles and brainteasers, Taking Sudoku Seriously uses this popular craze as the starting point for a fun-filled introduction to higher mathematics. How many Sudoku solution squares are there? What shapes other than three-by-three blocks can serve as acceptable Sudoku regions? What is the fewest number of starting clues a sound Sudoku puzzle can have? Does solving Sudoku require mathematics? Jason Rosenhouse and Laura Taalman show that answering these questions opens the door to a wealth of interesting mathematics. Indeed, they show that Sudoku puzzles and their variants are a gateway into mathematical thinking general...

The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$
  • Language: en
  • Pages: 145

The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$

The authors introduce a generalization of the Fourier transform, denoted by $\mathcal{F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1,n_2)$ on $\mathbb{R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ on $L^2(\mathbb{R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1,n_2+1)$ on the other hand.

Iwasawa Theory, Projective Modules, and Modular Representations
  • Language: en
  • Pages: 198

Iwasawa Theory, Projective Modules, and Modular Representations

This paper shows that properties of projective modules over a group ring $\mathbf{Z}_p[\Delta]$, where $\Delta$ is a finite Galois group, can be used to study the behavior of certain invariants which occur naturally in Iwasawa theory for an elliptic curve $E$. Modular representation theory for the group $\Delta$ plays a crucial role in this study. It is necessary to make a certain assumption about the vanishing of a $\mu$-invariant. The author then studies $\lambda$-invariants $\lambda_E(\sigma)$, where $\sigma$ varies over the absolutely irreducible representations of $\Delta$. He shows that there are non-trivial relationships between these invariants under certain hypotheses.

Discrete Mathematics
  • Language: en
  • Pages: 473

Discrete Mathematics

This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.