You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
In recent years, the issue of linkage in GEAs has garnered greater attention and recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. As shown in the work reported here, such parameters tweaking based approaches have their limits; they can be easily ”fooled” by cases of triviality or peculiarity of the class of problems that the algorithms are designed to handle. Furthermore, these approaches are usually blind to the interactions between the decision variables, thereby disrupting the partial solutions that are being built up along the way.
This is the Golden Age for Artificial Intelligence. The world is becoming increasingly automated and wired together. This also increases the opportunities for AI to help people and commerce. Almost every sub field of AI had now been used in substantial applications. Some of the fields highlighted in this publication are: CBR Technology; Model Based Systems; Data Mining and Natural Language Techniques. Not only does this publication show the activities, capabilities and accomplishments of the sub fields, it also focuses on what is happening across the field as a whole.
The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.
Annotation The three volume set LNAI 6096, LNAI 6097, and LNAI 6098 constitutes the thoroughly refereed conference proceedings of the 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligend Systems, IEA/AIE 2010, held in Cordoba, Spain, in June 2010. The total of 119 papers selected for the proceedings were carefully reviewed and selected from 297 submissions.
This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.
IBERAMIA is the international conference series of the Ibero-American Art- cialIntelligencecommunitythathasbeenmeetingeverytwoyearssincethe1988 meeting in Barcelona. The conference is supported by the main Ibero-American societies of AI and provides researchers from Portugal, Spain, and Latin Am- ica the opportunity to meet with AI researchers from all over the world. Since 1998, IBERAMIA has been a widely recognized international conference, with its papers written and presented in English, and its proceedings published by Springer in the LNAI series. This volume contains the papers accepted for presentation at Iberamia 2008, held in Lisbon, Portugal in October 2008. For this conference, 14...
This book constitutes the refereed proceedings of the 15th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 20013, held in Madrid, Spain, in September 2013. The 27 revised full papers presented were carefully selected from 66 submissions. The papers are organized in topical sections on Constraints, search and planning, intelligent Web and information retrieval, fuzzy systems, knowledge representation, reasoning and logic, machine learning, multiagent systems, multidisciplinary topics and applications, metaheuristics, uncertainty in artificial intelligence.
This three-volume set LNAI 8724, 8725 and 8726 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.
The ?eld of bioinformatics has two main objectives: the creation and main- nance of biological databases, and the discovery of knowledge from life sciences datainordertounravelthemysteriesofbiologicalfunction,leadingtonewdrugs andtherapiesforhumandisease. Life sciencesdatacomeinthe formofbiological sequences, structures, pathways, or literature. One major aspect of discovering biological knowledge is to search, predict, or model speci'c information in a given dataset in order to generate new interesting knowledge. Computer science methods such as evolutionary computation, machine learning, and data mining all have a great deal to o'er the ?eld of bioinformatics. The goal of the 8th - ropean ...