You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book brings together the latest information on almond genomics and transcriptomics, with a particular focus on cutting-edge findings, tools, and strategies employed in genome sequencing and analysis with regard to the most important agronomic traits. Cultivated almond [(Prunus dulcis (Miller) D. A. Webb, syn. Prunus amygdalus Batsch., Amygdalus communis L., Amygdalus dulcis Mill.)] is a tree crop producing seeds of great economic interest, and adapted to hot and dry climates. Domesticated in Southeast Asia, its small diploid genome and phenotypic diversity make it an ideal model to complement genomics studies on peach, generally considered to be the reference Prunus species. Both represent consanguineous species that evolved in two distinct environments: warmer and more humid in the case of peach, and colder and xerophytic for almond. The advent of affordable whole-genome sequencing, in combination with existing Prunus functional genomics data, has now made it possible to leverage the novel diversity found in almond, providing an unmatched resource for the genetic improvement of this species.
This book covers the biotechnology of all the major fruit and nut species. Since the very successful first edition of this book in 2004, there has been rapid progress for many fruit and nut species in cell culture, genomics and genetic transformation, especially for citrus and papaya. This book covers both these cutting-edge technologies and regeneration pathways, protoplast culture, in vitro mutagenesis, ploidy manipulation techniques that have been applied to a wider range of species. Three crop species, Diospyros kaki (persimmon), Punica granatum (pomegranate) and Eriobotrya japonica (loquat) are included for the first time. The chapters are organized by plant family to make it easier to make comparisons and exploitation of work with related species. Each chapter discusses the plant family and the related wild species for 38 crop species, and has colour illustrations. It is essential for scientists and post graduate students who are engaged in the improvement of fruit, nut and plantation crops.
The onset of flowering is an important step during the lifetime of a flowering plant. During the past two decades, there has been enormous progress in our understanding of how internal and external (environmental) cues control the transition to reproductive growth in plants. Many flowering time regulators have been identified from the model plant Arabidopsis thaliana. Most of them are assembled in regulatory pathways, which converge to central integrators which trigger the transition of the vegetative into an inflorescence meristem. For crop cultivation, the time of flowering is of upmost importance, because it determines yield. Phenotypic variation for this trait is largely controlled by genes, which were often modified during domestication or crop improvement. Understanding the genetic basis of flowering time regulation offers new opportunities for selection in plant breeding and for genome editing and genetic modification of crop species.
Anthropogenic activities have aggravated the effects of global climate change on ecosystems. Plants, because of their inability to escape from an adverse environment, suffer to a great extent from stresses, which can negatively impact their growth and development. Global warming is increasingly causing extreme climatic situations such as very high or low temperatures, drought and flooding events, hailstorms, wildfires, extreme precipitation events, and the reduction of fertile soil through desertification and salinization. In addition, warmer temperatures and higher humidity related with the climate change can also increase pest and disease pressure on plants by altering the geographic range, population size, and timing of pest and disease outbreaks. Taken together abiotic stress related with climate change as drought or extreme temperature can exacerbate the spread and severity of various diseases associated with biotic stress increasing the vulnerability of plants to pathogens (some examples include insects, fungi, bacteria or viruses).
This book presents deliberations on the molecular and genomic mechanisms underlying the interactions of crop plants with the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in fruit crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about...
This book examines the development of innovative modern methodologies towards augmenting conventional plant breeding, in individual crops, for the production of new crop varieties under the increasingly limiting environmental and cultivation factors to achieve sustainable agricultural production, enhanced food security, in addition to providing raw materials for innovative industrial products and pharmaceuticals. This Volume 4, subtitled Nut and Beverage Crops, focuses on advances in breeding strategies using both traditional and modern approaches for the improvement of individual plantation crops. Included in Part I, eleven important nut species recognized for their economical and nutritional importance including Almond, Argan, Brazil nut, Cashew nut, Chestnut, Hazelnut, Macadamia, Peanut, Pine nut, Pistachio and Walnut. Part II covers two popular beverage species, coffee and tea. This volume is contributed by 53 internationally reputable scientists from 13 countries. Each chapter comprehensively reviews the modern literature on the subject and reflects the authors own experience.
The global demand for high quality fruits that are rich in nutrients and that can endure the demands of worldwide supply chains is growing rapidly. Fruits are an important component of the human diet, providing vitamins, minerals, antioxidants, and fiber. All of these qualities contribute to the nutritional needs and health maintenance of humans. Breeding for Fruit Quality reviews the application of modern plant breeding methods to the development of improved varieties of fruits. Breeding for Fruit Quality opens with chapters that look at fruit biology and breeding strategies behind specific traits, including a look at traits such as organoleptic quality, nutritional value, and improved yiel...
None