You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Vector bundles and their associated moduli spaces are of fundamental importance in algebraic geometry. In recent decades this subject has been greatly enhanced by its relationships with other areas of mathematics, including differential geometry, topology and even theoretical physics, specifically gauge theory, quantum field theory and string theory. Peter E. Newstead has been a leading figure in this field almost from its inception and has made many seminal contributions to our understanding of moduli spaces of stable bundles. This volume has been assembled in tribute to Professor Newstead and his contribution to algebraic geometry. Some of the subject's leading experts cover foundational material, while the survey and research papers focus on topics at the forefront of the field. This volume is suitable for both graduate students and more experienced researchers.
This volume contains the proceedings of the VBAC 2022 Conference on Moduli Spaces and Vector Bundles—New Trends, held in honor of Peter Newstead's 80th birthday, from July 25–29, 2022, at the University of Warwick, Coventry, United Kingdom. The papers focus on the theory of stability conditions in derived categories, non-reductive geometric invariant theory, Brill-Noether theory, and Higgs bundles and character varieties. The volume includes both survey and original research articles. Most articles contain substantial background and will be helpful to both novices and experts.
This volume contains a collection of papers from the Conference on Vector Bundles held at Miraflores de la Sierra, Madrid, Spain on June 16-20, 2008, which honored S. Ramanan on his 70th birthday. The main areas covered in this volume are vector bundles, parabolic bundles, abelian varieties, Hilbert schemes, contact structures, index theory, Hodge theory, and geometric invariant theory. Professor Ramanan has made important contributions in all of these areas.
pt. 1. List of patentees.--pt. 2. Index to subjects of inventions.
Publisher Description
The book starts with an introduction to Geometric Invariant Theory (GIT). The fundamental results of Hilbert and Mumford are exposed as well as more recent topics such as the instability flag, the finiteness of the number of quotients, and the variation of quotients. In the second part, GIT is applied to solve the classification problem of decorated principal bundles on a compact Riemann surface. The solution is a quasi-projective moduli scheme which parameterizes those objects that satisfy a semistability condition originating from gauge theory. The moduli space is equipped with a generalized Hitchin map. Via the universal Kobayashi-Hitchin correspondence, these moduli spaces are related to...
C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.
This collection of cutting-edge articles on vector bundles and related topics originated from a CMI workshop, held in October 2006, that brought together a community indebted to the pioneering work of P. E. Newstead, visiting the United States for the first time since the 1960s. Moduli spaces of vector bundles were then in their infancy, but are now, as demonstrated by this volume, a powerful tool in symplectic geometry, number theory, mathematical physics, and algebraic geometry. In fact, the impetus for this volume was to offer a sample of the vital convergence of techniques and fundamental progress, taking place in moduli spaces at the outset of the twenty-first century. This volume conta...