You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains research and expository papers by some of the speakers at the 2005 AMS Summer Institute on Algebraic Geometry. Numerous papers delve into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties.
Now back in print by the AMS, this is a significantly revised edition of a book originally published in 1987 by Academic Press. This book gives the reader an introduction to the theory of algebraic representations of reductive algebraic groups. To develop appropriate techniques, the first part of the book is an introduction to the general theory of representations of algebraic group schemes. Here, the author describes important basic notions: induction functors, cohomology,quotients, Frobenius kernels, and reduction mod $p$, among others. The second part of the book is devoted to the representation theory of reductive algebraic groups. It includes topics such as the description of simple mod...
Hodge theory originated as an application of harmonic theory to the study of the geometry of compact complex manifolds. The ideas have proved to be quite powerful, leading to fundamentally important results throughout algebraic geometry. This book consists of expositions of various aspects of modern Hodge theory. Its purpose is to provide the nonexpert reader with a precise idea of the current status of the subject. The three chapters develop distinct but closely related subjects:$L2$ Hodge theory and vanishing theorems; Frobenius and Hodge degeneration; variations of Hodge structures and mirror symmetry. The techniques employed cover a wide range of methods borrowed from the heart of mathem...
C.S. Seshadri turned seventy on the 29th of February, 2002. To mark this occasion, a symposium was held in Chennai, India, where some of his colleagues gave expository talks highlighting Seshadri's contributions to mathematics. This volume includes expanded texts of these talks as well as research and expository papers on geometry and representation theory. It will serve as an excellent reference for researchers and students in these areas.
Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.
This book provides a hands-on, application-oriented guide to the entire IEEE standard 1800 SystemVerilog language. Readers will benefit from the step-by-step approach to learning the language and methodology nuances, which will enable them to design and verify complex ASIC/SoC and CPU chips. The author covers the entire spectrum of the language, including random constraints, SystemVerilog Assertions, Functional Coverage, Class, checkers, interfaces, and Data Types, among other features of the language. Written by an experienced, professional end-user of ASIC/SoC/CPU and FPGA designs, this book explains each concept with easy to understand examples, simulation logs and applications derived fr...
Vector bundles and their associated moduli spaces are of fundamental importance in algebraic geometry. In recent decades this subject has been greatly enhanced by its relationships with other areas of mathematics, including differential geometry, topology and even theoretical physics, specifically gauge theory, quantum field theory and string theory. Peter E. Newstead has been a leading figure in this field almost from its inception and has made many seminal contributions to our understanding of moduli spaces of stable bundles. This volume has been assembled in tribute to Professor Newstead and his contribution to algebraic geometry. Some of the subject's leading experts cover foundational material, while the survey and research papers focus on topics at the forefront of the field. This volume is suitable for both graduate students and more experienced researchers.
Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.