You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Integrates rational approximation with adaptive filtering, providing viable, numerically reliable procedures for creating adaptive infinite impulse response (IIR) filters. The choice of filter structure to adapt, algorithm design and the approximation properties for each type of algorithm are also addressed. This work recasts the theory of adaptive IIR filters by concentrating on recursive lattice filters, freeing systems from the need for direct-form filters.;A solutions manual is available for instructors only. College or university bookstores may order five or more copies at a special student price which is available upon request.
Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This first volume, Foundations, introduces core topics in inference and learning, such as matrix theory, linear algebra, random variables, convex optimization and stochastic optimization, and prepares students for studying their practical application in later volumes. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 600 end-of-chapter problems (including solutions for instructors), 100 figures, 180 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Inference and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference.
The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for con...
I feel very honoured to have been asked to write a brief foreword for this book on QRD-RLS Adaptive Filtering–asubjectwhichhas been close to my heart for many years. The book is well written and very timely – I look forward personally to seeing it in print. The editor is to be congratulated on assembling such a highly esteemed team of contributing authors able to span the broad range of topics and concepts which underpin this subject. In many respects, and for reasons well expounded by the authors, the LMS al- rithm has reigned supreme since its inception, as the algorithm of choice for prac- cal applications of adaptive ltering. However, as a result of the relentless advances in electronic technology, the demand for stable and ef cient RLS algorithms is growing rapidly – not just because the higher computational load is no longer such a serious barrier, but also because the technological pull has grown much stronger in the modern commercial world of 3G mobile communications, cognitive radio, high speed imagery, and so on.
"The collection of the contributions to these volumes offers a flavor of the plethora of different approaches to attack structured matrix problems. The reader will find that the theory of structured matrices is positioned to bridge diverse applications in the sciences and engineering, deep mathematical theories, as well as computational and numberical issues. The presentation fully illustrates the fact that the technicques of engineers, mathematicisn, and numerical analysts nicely complement each other, and they all contribute to one unified theory of structured matrices"--Back cover.
This text seeks to clarify various contradictory claims regarding capabilities and limitations of blind equalization. It highlights basic operating conditions and potential for malfunction. The authors also address concepts and principles of blind algorithms for single input multiple output (SIMO) systems and multi-user extensions of SIMO equalization and identification.
A reference work on all aspects and applications of digital signal processing, which covers the design of hardware and software systems, and the principles and applications of video processing, communications, sonar and radar.