You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computer simulations not only belong to the most important methods for the theoretical investigation of granular materials, but provide the tools that have enabled much of the expanding research by physicists and engineers. The present book is intended to serve as an introduction to the application of numerical methods to systems of granular particles. Accordingly emphasis is on a general understanding of the subject rather than on the presentation of latest advances in numerical algorithms. Although a basic knowledge of C++ is needed for the understanding of the numerical methods and algorithms in the book, it avoids usage of elegant but complicated algorithms to remain accessible for those who prefer to use a different programming language. While the book focuses more on models than on the physics of granular material, many applications to real systems are presented.
The book is divided into three parts, which contain respectively recent results in the kinetic theory of granular gases, kinetic theory of chemically reacting gases, and numerical methods for kinetic systems. Part I is devoted to theoretical aspects of granular gases. Part II presents recent results on modelling of kinetic systems in which molecules can undergo binary collisions in presence of chemical reactions and/or in presence of quantum effects. Part III contains several contributions related to the construction of suitable numerical methods and simulations for granular gases.
Lena Böttcher offers an overdue exploration of the early years of the deaconess community in Neuendettelsau from a gender perspective. Drawing on rich archival material, she focuses on the process of a distinctive collective identity. Central to this study is the assumption, drawn from the social sciences, that collective identity is a social construction which requires the participation of the whole group through identification and which is consolidated by developing specific rituals, symbols, codes and normative texts, which facilitate integration, and by constructing external boundaries, which separate from the world and the wider church. This approach highlights the fact that the women were not merely passive recipients but participated and contributed to the formation of a distinct Neuendettelsau deaconess culture. Thus, this study offers an explanation for the popularity such institutes enjoyed amongst single and widowed Protestant women in the latter half of the nineteenth century. In consequence, this study significantly widens the scope of historical research on the Institute which so far has tended to take into account solely the male perspective of the Rektoren.
The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids.
This text treats the Korteweg-de Vries (KdV) equation with periodic boundary conditions. This equation models waves in homogeneous, weakly nonlinear and weakly dispersive media in general. For the first time, these important results are comprehensively covered in book form, authored by internationally renowned experts in the field.
The theory of stochastic processes originally grew out of efforts to describe Brownian motion quantitatively. Today it provides a huge arsenal of methods suitable for analyzing the influence of noise on a wide range of systems. The credit for acquiring all the deep insights and powerful methods is due ma- ly to a handful of physicists and mathematicians: Einstein, Smoluchowski, Langevin, Wiener, Stratonovich, etc. Hence it is no surprise that until - cently the bulk of basic and applied stochastic research was devoted to purely mathematical and physical questions. However, in the last decade we have witnessed an enormous growth of results achieved in other sciences - especially chemistry and...
Inverse Spectral Theory
"Granular Gases" are diluted many-particle systems in which the mean free path of the particles is much larger than the typical particle size, and where particle collisions occur dissipatively. The dissipation of kinetic energy can lead to effects such as the formation of clusters, anomalous diffusion and characteristic shock waves to name but a few. The book is organized as follows: Part I comprises the rigorous theoretical results for the dilute limit. The detailed properties of binary collisions are described in Part II. Part III contains experimental investigations of granular gases. Large-scale behaviour as found in astrophysical systems is discussed in Part IV. Part V, finally, deals with possible generalizations for dense granular systems.
This is the second volume of the procedings of the second European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners. Together with volume II it contains a collection of contributions by the invited lecturers. Finally, volume II also presents reports on some of the Round Table discussions. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: Vol. I: N. Alon, L. Ambrosio, K. Astala, R. Benedetti, Ch. Bessenrodt, F. Bethuel, P. Bjørstad, E. Bolthausen, J. Bricmont, A. Kupiainen, D. Burago, L. Caporaso, U. Dierkes, I. Dynnikov, L.H. Eliasson, W.T. Gowers, H. Hedenmalm, A. Huber, J. Kaczorowski, J. Kollár, D.O. Kramkov, A.N. Shiryaev, C. Lescop, R. März. Vol. II: J. Matousek, D. McDuff, A.S. Merkurjev, V. Milman, St. Müller, T. Nowicki, E. Olivieri, E. Scoppola, V.P. Platonov, J. Pöschel, L. Polterovich , L. Pyber, N. Simányi, J.P. Solovej, A. Stipsicz, G. Tardos, J.-P. Tignol, A.P. Veselov, E. Zuazua.
X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.