You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive guide to a wide range of optical experiments. Topics covered include classical geometrical and physical optics, polarization, scattering and diffraction, imaging, interference, wave propagation, optical properties of materials, and atmospheric and relativistic optics. There are a few selected suggestions on lasers and quantum optics. The book is an essential practical guide for optics students and their mentors at undergraduate and postgraduate levels. The experiments described are based on the author's experience during many years of laboratory teaching in several universities and colleges and the emphasis is on setups which use equipment that is commonly ...
During the last two decades, optical stellar interferometry has become an important tool in astronomical investigations requiring spatial resolution well beyond that of traditional telescopes. This book, first published in 2006, was the first to be written on the subject. The authors provide an extended introduction discussing basic physical and atmospheric optics, which establishes the framework necessary to present the ideas and practice of interferometry as applied to the astronomical scene. They follow with an overview of historical, operational and planned interferometric observatories, and a selection of important astrophysical discoveries made with them. Finally, they present some as-yet untested ideas for instruments both on the ground and in space which may allow us to image details of planetary systems beyond our own.
"Provides a coherent treatment of the basic principles and theories of engineering physics"--
This fourth edition of a well-established textbook takes students from fundamental ideas to the most modern developments in optics. Illustrated with 400 figures, it contains numerous practical examples, many from student laboratory experiments and lecture demonstrations. Aimed at undergraduate and advanced courses on modern optics, it is ideal for scientists and engineers. The book covers the principles of geometrical and physical optics, leading into quantum optics, using mainly Fourier transforms and linear algebra. Chapters are supplemented with advanced topics and up-to-date applications, exposing readers to key research themes, including negative refractive index, surface plasmon resonance, phase retrieval in crystal diffraction and the Hubble telescope, photonic crystals, super-resolved imaging in biology, electromagnetically induced transparency, slow light and superluminal propagation, entangled photons and solar energy collectors. Solutions to the problems, simulation programs, key figures and further discussions of several topics are available at www.cambridge.org/lipson.
This fourth edition of a well-established textbook takes students from fundamental ideas to the most modern developments in optics. Illustrated with 400 figures, it contains numerous practical examples, many from student laboratory experiments and lecture demonstrations. Aimed at undergraduate and advanced courses on modern optics, it is ideal for scientists and engineers. The book covers the principles of geometrical and physical optics, leading into quantum optics, using mainly Fourier transforms and linear algebra. Chapters are supplemented with advanced topics and up-to-date applications, exposing readers to key research themes, including negative refractive index, surface plasmon resonance, phase retrieval in crystal diffraction and the Hubble telescope, photonic crystals, super-resolved imaging in biology, electromagnetically induced transparency, slow light and superluminal propagation, entangled photons and solar energy collectors. Solutions to the problems, simulation programs, key figures and further discussions of several topics are available at www.cambridge.org/lipson.
This fourth edition of a well-established textbook takes students from fundamental ideas to the most modern developments in optics. Illustrated with 400 figures, it contains numerous practical examples, many from student laboratory experiments and lecture demonstrations. Aimed at undergraduate and advanced courses on modern optics, it is ideal for scientists and engineers. The book covers the principles of geometrical and physical optics, leading into quantum optics, using mainly Fourier transforms and linear algebra. Chapters are supplemented with advanced topics and up-to-date applications, exposing readers to key research themes, including negative refractive index, surface plasmon resonance, phase retrieval in crystal diffraction and the Hubble telescope, photonic crystals, super-resolved imaging in biology, electromagnetically induced transparency, slow light and superluminal propagation, entangled photons and solar energy collectors. Solutions to the problems, simulation programs, key figures and further discussions of several topics are available at www.cambridge.org/lipson.
Student wellbeing is foundational to academic success. One recent survey of postsecondary educators found that nearly 80 percent believed emotional wellbeing is a "very" or "extremely" important factor in student success. Studies have found the dropout rates for students with a diagnosed mental health problem range from 43 percent to as high as 86 percent. While dealing with stress is a normal part of life, for some students, stress can adversely affect their physical, emotional, and psychological health, particularly given that adolescence and early adulthood are when most mental illnesses are first manifested. In addition to students who may develop mental health challenges during their ti...
Writing in academe. Letting go of the dream ; Demystifying academic writing ; Craftsman attitude -- Using tools that work. Three taming techniques ; Securing time ; Securing space ; Securing energy -- Challenging writing myths. Draining the drama ; Demons in for tea ; The magnum opus myth ; The impostor syndrome ; The cleared-deck fantasy ; The hostile reader fear ; Compared with X ; The perfect first sentence ; One more source -- Maintaining momentum. Follow the lilt ; Beginnings and endings ; Finding the lost trail ; Effective feedback ; Handling revisions and rejections ; Working with stalls ; Relinquishing toxic projects ; Back-burner projects ; Breaks, summers, and sabbaticals -- Building writing support. Overcoming isolation ; Creating faculty writing groups ; Building campus writing support.
This is the third edition of a successful and well-established text. Thoroughly revised and updated, the book provides a comprehensive introduction to the fundamentals of optics, and to a wide variety of more advanced areas of modern optical science. Several new sections have been added, including discussions of super-resolved imaging, phase-retrieval in optical and X-ray diffraction, phase-conjugate imaging and squeezed-light interferometry. Throughout, the subject matter is developed by a combination of unsophisticated mathematics and physical intuition, with particular emphasis being placed on Fourier analysis. The very broad range of subjects treated, together with the inclusion of many problems and over 300 diagrams and photographs, will make the book of great use to undergraduate and graduate students of physics, and to anyone working in the field of optical science.
Dieses in drei englischen Auflagen erfolgreiche und bestens eingeführte Lehrbuch erscheint hier erstmals in deutscher Übersetzung, die um die Lösungen der Aufgaben erweitert ist. Studierende der Physik und Ingenieurwissenschaften finden alles, was sie zur Prüfung in diesem Fach brauchen. Der Text ist klar formuliert, der Inhalt ist didaktisch übersichtlich gegliedert und ansprechend gestaltet. 332 zweifarbige Abbildungen, Vertiefungsthemen zu jedem Kapitel, zahlreiche Experimente und Beispiele sowie 125 Übungsaufgaben mit vollständigen Lösungswegen tragen zum gründlichen Verständnis des Stoffs bei. Zur dritten englischen Ausgabe hieß es:"Das Buch gibt eine gute Einführung in die klassische und moderne Optik." Physikalische Blätter 52, 1256 (1996)