You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Here is a comprehensive summary of new research and advancements in the unique functional and nutraceutical therapeutic and physiochemical aspects of dairy foods. The book explores the specific health benefits of dairy ingredients in nutraceuticals and functional foods as well as delves into production techniques that enhancement their therapeutic value. The first section of the book looks at the physicochemical and technological aspects of milk-derived components, discussing production, extraction and purification, and functional and technological applications of various functional dairy ingredients (such as lactulose, casein and whey protein-derived bioactive peptides). The volume also con...
The issue concentrates on the history and current production practices unique to the specialty wines. This includes fortified wines, such as ports, sherries, sparkling wines, and distinctive table wines, such as vin santo, botrytised, and carbonic maceration wines. - The latest important information for food scientists and nutritionists - Peer-reviewed articles by a panel of respected scientists - The go-to series since 1948
This book covers the course of Food Biotechnology adopted by various universities. The book is primarily meant for undergraduate and postgraduate classes as a Reference-cum-Textbook. It would be very useful both from teaching and research point of view. All the chapters in the book are contributed by the experts in their respective fields of research. These are intended to equip the readers with the basics and applied research in food biotechnology. To make concepts more clear, the contents have been divided into following sections. The aim is to develop an authentic account of biotechnology in the food industry and stimulate research in food biotechnology. Unlike the past, the present food ...
All industrial production processes generate waste waters, which can pollute water bodies into which they are discharged without adequate treatment. It is, therefore, essential to treat such wastes and eliminate their harmful effects on the environment. This book discusses sources, characteristics and treatment of waste waters produced in industries such as textiles, dairy, tanneries, pulp and paper, fertilizer, pesticide, organic and inorganic chemicals, engineering and fermentation. Many flow diagrams have been included to illustrate industrial processes and to indicate the sources of waste water in such processes. After describing treatment for individual factories, the author discusses the more advanced and economical common effluent plants. The text uses simple and straightforward language and makes the presentation attractive. This book should prove extremely useful to undergraduate students of civil and chemical engineering and postgraduate students of environmental science and engineering. Industrial design consultants will also find the book very handy. To the Greens, it may offer some of the solutions to their concerns.
This book serves to highlight the seamless integration of the sciences leading to sustainable technologies. Chemical engineering is one of the major disciplines catering to the societal needs in the fields of energy, environment and materials. The chapters of this book have been selected to encompass the latest in industrial biotechnology and biochemical engineering principles and applications. The chapters are included here after careful review for content and depth. The book focuses on the relatively new areas of molecular biotechnology and nanotechnology which have a strong impact at the fundamental and process levels in chemical engineering. The book also covers analytical procedures, experimental techniques and process analysis in bioprocessing, bioremediation, green separation methods, and emerging nanoparticle applications. It should be useful to students, academicians, and practitioners alike.
The agri-food industry creates a vast amount of waste each year. This is not just a problem for waste management, in terms of finding space to store waste and preventing escape of harmful waste into the environment; it also represents a loss of resources: the chemicals and energy which have gone into the production of this waste. If current waste streams can be converted into useful resources this will have multiple benefits by reducing the amount of waste sent to landfill or similar, reducing the need for other feedstocks and removing the pressure from feedstocks that could be used as food. Research into the different types of waste produced by the agri-food industry and approaches to converting them into useful chemicals or chemical feedstocks has advanced rapidly over the last few years. Covering the latest developments in the valorisation of food and agricultural waste, such as valorisation of citrus peel and industrial wastes, this book is a great resource for researchers interested in waste management, sustainability and the circular economy.
This book cover all types of microbe based polymers and their application in diverse sectors with special emphasis on agriculture. It collates latest research, methods, opinion, perspectives, and reviews dissecting the microbial origins of polymers, their production, design, and processing at industrial level, as well as improvements for specific industrial applications. Book also discusses recent advances in biopolymer production and their modification for amplifying the value. In addition, understanding of the microbial physiology and optimal conditions for polymer production are also explained. This compilation of scientific chapters on principles and practices of microbial polymers fosters the knowledge transfer among scientific communities, industries, and microbiologist and serves students, academicians, researchers for a better understanding of the nature of microbial polymers and application procedure for sustainable ecosystem
Agro-industrial wastes are end-products emerging after industrial processing operations and also from their treatment and disposal e.g. solid fruit wastes and sludge. The agro-industrial wastes are often present in multiphase and comprise multicomponent. Nevertheless, these wastes are a goldmine as they possess valuable organic matter which can be diverted towards high value products ranging from polymers to antibiotics to platform chemicals. There have been plenty of books published on bioenergy, enzymes and organic acids, among others. However, this emerging field of biochemical has not yet been covered so far which is an important entity of the biorefinery model from waste biomass and needs to be understood from fundamental, applied as well as commercial perspective which has been laid out in this book.
This book gives a complete overview of current developments in the fabrication and diverse applications of metal and metal oxide nanomaterials synthesized from agricultural/horticultural products and organic waste materials. Nanoparticles are thought to have been present on earth naturally since its origin in the form of soil, water, volcanic dust, and minerals. Besides their natural origin, they have been also synthesized by using physical, chemical, and biological means. The chapters in this book look at agricultural as well as horticultural wastes from industries, such as palm oil, rubber, paper, wood, vegetable, coffee/tea, rice, wheat, maize, grass, and fruit juice processing factories, and describe the methods to extract and synthesize metal and metal oxide nanoparticles, which are then applied in various sectors such as food, agriculture, cosmetics, and medicines industries. The book is a reference source for academician, scientists, policymakers, students, and researchers scientist working in minimizing the environmental pollution and implementing nanotechnology into agricultural waste products to produce eco-friendly and cost-effective nanoparticles.
Advances in Biopolymers for Food Science and Technology brings together the latest techniques for the preparation of bio-based polymeric materials, for novel food applications.The book begins by introducing biopolymers and their various polysaccharide and protein sources, addressing biopolymers from marine sources in particular. Food design using biopolymers, and their preparation as gels and composites are then discussed in detail. This is followed by in-depth chapters guiding the reader through specific applications, including fat replacement products, delivery systems, food emulsions, micro- and nano-encapsulation, nanovehicles, nanostructures, nanofilms, antimicrobial peptides, food coat...