You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encomp...
Annotation New edition of a reference that presents the values of properties typical for the most common alloy processing conditions, thus providing a starting point in the search for a suitable material that will allow, with proper use, all the necessary design limitations to be met (strength, toughness, corrosion resistance and electronic properties, etc.) The data is arranged alphabetically and contains information on the manufacturer, the properties of the alloy, and in some cases its use. The volume includes 32 tables that present such information as densities, chemical elements and symbols, physical constants, conversion factors, specification requirements, and compositions of various alloys and metals. Also contains a section on manufacturer listings with contact information. Edited by Frick, a professional engineering consultant. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Since the first edition of this book was published in 2004, computed tomography has seen groundbreaking technical innovations that have transformed the field of thoracic imaging and opened novel possibilities for the detection of thoracic pathologies. This book highlights cutting-edge thoracic applications of CT imaging in the context of these technical innovations and discusses the latest opportunities, with critical appraisal of challenges and controversies. All topics are covered by renowned international experts. Chapters from the original edition have been thoroughly updated to reflect the state of the art in technology and scientific evidence, and new contributions included on recent developments such as dual-energy CT and CT imaging in patients with acute chest pain. The book is abundantly illustrated with high-quality images and illustrations.
Heat shock proteins are emerging as important molecules in the development of cancer and as key targets in cancer therapy. These proteins enhance the growth of cancer cells and protect tumors from treatments such as drugs or surgery. However, new drugs have recently been developed particularly those targeting heat shock protein 90. As heat shock protein 90 functions to stabilize many of the oncogenes and growth promoting proteins in cancer cells, such drugs have broad specificity in many types of cancer cell and offer the possibility of evading the development of resistance through point mutation or use of compensatory pathways. Heat shock proteins have a further property that makes them tempting targets in cancer immunotherapy. These proteins have the ability to induce an inflammatory response when released in tumors and to carry tumor antigens to antigen presenting cells. They have thus become important components of anticancer vaccines. Overall, heat shock proteins are important new targets in molecular cancer therapy and can be approached in a number of contrasting approaches to therapy.
This book is a comprehensive and richly-illustrated guide to cardiac CT, its current state, applications, and future directions. While the first edition of this text focused on what was then a novel instrument looking for application, this edition comes at a time where a wealth of guideline-driven, robust, and beneficial clinical applications have evolved that are enabled by an enormous and ever growing field of technology. Accordingly, the focus of the text has shifted from a technology-centric to a more patient-centric appraisal. While the specifications and capabilities of the CT system itself remain front and center as the basis for diagnostic success, much of the benefit derived from ca...
The design of mechanical structures with predictable and improved durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading researchers in the field, this book, along with the complementary books Fatigue of Materials and Structures: Fundamentals and Application to Damage and Design (both also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major ...
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.
This book reviews the basics of pulmonary functional imaging using new CT and MR techniques and describes the clinical applications of these techniques in detail. The intention is to equip readers with a full understanding of pulmonary functional imaging that will allow optimal application of all relevant techniques in the assessment of a variety of diseases, including COPD, asthma, cystic fibrosis, pulmonary thromboembolism, pulmonary hypertension, lung cancer and pulmonary nodule. Pulmonary functional imaging has been promoted as a research and diagnostic tool that has the capability to overcome the limitations of morphological assessments as well as functional evaluation based on traditional nuclear medicine studies. The recent advances in CT and MRI and in medical image processing and analysis have given further impetus to pulmonary functional imaging and provide the basis for future expansion of its use in clinical applications. In documenting the utility of state-of-the-art pulmonary functional imaging in diagnostic radiology and pulmonary medicine, this book will be of high value for chest radiologists, pulmonologists, pulmonary surgeons, and radiation technologists.
Everyone on campus knows Remy Cameron: he's the out-and-proud, super-likable guy who friends, faculty, and fellow students alike admire for his cheerful confidence. Under pressure to write an A+ essay defining who he is and who he wants to be, Remy embarks on an emotional journey toward reconciling the outward labels people attach to him with the real Remy Cameron within.
Solid-binding peptides have been used increasingly as molecular building blocks in nanobiotechnology as they can direct the assembly and functionalisation of a diverse range of materials and have the ability to regulate the synthesis of nanoparticles and complex nanostructures. Nanostructured materials such as β-sheet fibril-forming peptides and α-helical coiled coil systems have displayed many useful properties including stimulus-responsiveness, modularity and multi-functionality, providing potential technological applications in tissue engineering, antimicrobials, drug delivery and nanoscale electronics. The current situation with respect to self-assembling peptides and bioactive matrices for regenerative medicine are reviewed, as well as peptide-target modeling and an examination of future prospects for peptides in these areas.