You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.
This volume presents recent methodological developments in data analysis and classification. It covers a wide range of topics, including methods for classification and clustering, dissimilarity analysis, consensus methods, conceptual analysis of data, and data mining and knowledge discovery in databases. The book also presents a wide variety of applications, in fields such as biology, micro-array analysis, cyber traffic, and bank fraud detection.
This volume provides recent research results in data analysis, classification and multivariate statistics and highlights perspectives for new scientific developments within these areas. Particular attention is devoted to methodological issues in clustering, statistical modeling and data mining. The volume also contains significant contributions to a wide range of applications such as finance, marketing, and social sciences. The papers in this volume were first presented at the 7th Conference of the Classification and Data Analysis Group (ClaDAG) of the Italian Statistical Society, held at the University of Catania, Italy.
Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such data. Symbolic data methods differ from that of data mining, for example, because rather than identifying points of interest in the data, symbolic data methods allow the user to build models of the data and make predictions about future events. This book is the result of the work f a pan-European project team led by Edwin Diday following 3 years work sponsored by EUROSTAT. It includes a full explanation of the new SODAS software developed as a result of this project. The software and methods described highlight the crossover between statistics and computer science, with a particular emphasis on data mining.
This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining.
This volume includes contributions selected after a double blind review process and presented as a preliminary version at the 45th Meeting of the Italian Statistical Society. The papers provide significant and innovative original contributions and cover a broad range of topics including: statistical theory; methods for time series and spatial data; statistical modeling and data analysis; survey methodology and official statistics; analysis of social, demographic and health data; and economic statistics and econometrics.
Visualization and Verbalization of Data shows how correspondence analysis and related techniques enable the display of data in graphical form, which results in the verbalization of the structures in data. Renowned researchers in the field trace the history of these techniques and cover their current applications.The first part of the book explains
The seven volumes LNCS 12249-12255 constitute the refereed proceedings of the 20th International Conference on Computational Science and Its Applications, ICCSA 2020, held in Cagliari, Italy, in July 2020. Due to COVID-19 pandemic the conference was organized in an online event. Computational Science is the main pillar of most of the present research, industrial and commercial applications, and plays a unique role in exploiting ICT innovative technologies. The 466 full papers and 32 short papers presented were carefully reviewed and selected from 1450 submissions. Apart from the general track, ICCSA 2020 also include 52 workshops, in various areas of computational sciences, ranging from computational science technologies, to specific areas of computational sciences, such as software engineering, security, machine learning and artificial intelligence, blockchain technologies, and of applications in many fields.
This two-volume set (LNAI 11683 and LNAI 11684) constitutes the refereed proceedings of the 11th International Conference on Computational Collective Intelligence, ICCCI 2019, held in Hendaye France, in September 2019.The 117 full papers presented were carefully reviewed and selected from 204 submissions. The papers are grouped in topical sections on: knowledge engineering and semantic web; social networks and recommender systems; text processing and information retrieval; data mining methods and applications; computer vision techniques; decision support and control systems; cooperative strategies for decision making and optimization; intelligent modeling and simulation approaches for real world systems; and innovations in intelligent systems.
During the last decade, Knowledge Discovery and Management (KDM or, in French, EGC for Extraction et Gestion des connaissances) has been an intensive and fruitful research topic in the French-speaking scientific community. In 2003, this enthusiasm for KDM led to the foundation of a specific French-speaking association, called EGC, dedicated to supporting and promoting this topic. More precisely, KDM is concerned with the interface between knowledge and data such as, among other things, Data Mining, Knowledge Discovery, Business Intelligence, Knowledge Engineering and Semantic Web. The recent and novel research contributions collected in this book are extended and reworked versions of a selection of the best papers that were originally presented in French at the EGC 2010 Conference held in Tunis, Tunisia in January 2010. The volume is organized in three parts. Part I includes four chapters concerned with various aspects of Data Cube and Ontology-based representations. Part II is composed of four chapters concerned with Efficient Pattern Mining issues, while in Part III the last four chapters address Data Preprocessing and Information Retrieval.