Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Deep Learning for Medical Image Analysis
  • Language: en
  • Pages: 460

Deep Learning for Medical Image Analysis

Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache

Medical Image Recognition, Segmentation and Parsing
  • Language: en
  • Pages: 548

Medical Image Recognition, Segmentation and Parsing

This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: - Research challenges and problems in m...

Unconstrained Face Recognition
  • Language: en
  • Pages: 244

Unconstrained Face Recognition

Face recognition has been actively studied over the past decade and continues to be a big research challenge. Just recently, researchers have begun to investigate face recognition under unconstrained conditions. Unconstrained Face Recognition provides a comprehensive review of this biometric, especially face recognition from video, assembling a collection of novel approaches that are able to recognize human faces under various unconstrained situations. The underlying basis of these approaches is that, unlike conventional face recognition algorithms, they exploit the inherent characteristics of the unconstrained situation and thus improve the recognition performance when compared with conventional algorithms. Unconstrained Face Recognition is structured to meet the needs of a professional audience of researchers and practitioners in industry. This volume is also suitable for advanced-level students in computer science.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
  • Language: en
  • Pages: 867

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applica...

Deep Learning for COVID Image Analysis
  • Language: en
  • Pages: 350

Deep Learning for COVID Image Analysis

Medical imaging is playing a role in the fight against COVID-19, in some countries as a key tool, from the screening and diagnosis through the entire treatment procedure. The extraordinarily rapid spread of this pandemic has demonstrated that a new disease entity with a subset of relatively unique characteristics can pose a major new clinical challenge that requires new diagnostic tools in imaging. The AI/Deep Learning Imaging community has shown in many recent publications that rapidly developed AI-based automated CT and Xray image analysis tools can achieve high accuracy in detection of Coronavirus positive patients as well as quantifying the disease burden. The typical developmental cycle...

Recognition of Humans and Their Activities Using Video
  • Language: en
  • Pages: 179

Recognition of Humans and Their Activities Using Video

The recognition of humans and their activities from video sequences is currently a very active area of research because of its applications in video surveillance, design of realistic entertainment systems, multimedia communications, and medical diagnosis. In this lecture, we discuss the use of face and gait signatures for human identification and recognition of human activities from video sequences. We survey existing work and describe some of the more well-known methods in these areas. We also describe our own research and outline future possibilities. In the area of face recognition, we start with the traditional methods for image-based analysis and then describe some of the more recent de...

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
  • Language: en
  • Pages: 816

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applica...

Handbook of MRI Pulse Sequences
  • Language: en
  • Pages: 1041

Handbook of MRI Pulse Sequences

  • Type: Book
  • -
  • Published: 2004-09-21
  • -
  • Publisher: Elsevier

Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems

Handbook of Medical Image Computing and Computer Assisted Intervention
  • Language: en
  • Pages: 1074

Handbook of Medical Image Computing and Computer Assisted Intervention

Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
  • Language: en
  • Pages: 886

Medical Image Computing and Computer Assisted Intervention – MICCAI 2020

The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applica...